...
首页> 外文期刊>ACS applied materials & interfaces >Suppression of Magnetoresistance in Thin WTe2 Flakes by Surface Oxidation
【24h】

Suppression of Magnetoresistance in Thin WTe2 Flakes by Surface Oxidation

机译:表面氧化抑制薄的WTE2薄片中的磁阻

获取原文
获取原文并翻译 | 示例
           

摘要

Recent renewed interest in layered transition metal dichalcogenides stems from the exotic electronic phases predicted and observed in the single- and few-layer limit. Realizing these electronic phases requires preserving the desired transport properties down to a monolayer, which is challenging. Surface oxides are known to impart Fermi level pinning or degrade the mobility on a number of different systems, including transition metal dichalcogenides and black phosphorus. Semimetallic WTe2 exhibits large magnetoresistance due to electronhole compensation; thus, Fermi level pinning in thin WTe2 flakes could break the electronhole balance and suppress the large magnetoresistance. We show that WTe2 develops an similar to 2 nm thick amorphous surface oxide, which shifts the Fermi level by similar to 300 meV at the WTe2 surface. We also observe a dramatic suppression of the magnetoresistance for thin flakes. However, due to the semimetallic nature of WTe2, the effects of Fermi level pinning are well screened and are not the dominant cause for the suppression of magnetoresistance, supported by fitting a two-band model to the transport data, which showed the electron and hole carrier densities are balanced down to similar to 13 nm. However, the fitting shows a significant decrease of the mobilities of both electrons and holes. We attribute this to the disorder introduced by the amorphous surface oxide layer. Thus, the decrease of mobility is the dominant factor in the suppression of magnetoresistance for thin WTe2 flakes. Our study highlights the critical need to investigate often unanticipated and sometimes unavoidable extrinsic surface effects on the transport properties of layered dichalcogenides and other 2D materials.
机译:近期再次对分层过渡金属二甲基生成的兴趣来自预测和观察到的单一和几层限制的异国电子阶段。实现这些电子阶段需要将所需的运输性能保持在挑战的单层上。已知表面氧化物赋予FERMI水平钉扎或降解多种不同系统的迁移率,包括过渡金属二甲基化物和黑磷。半金属WTE2由于电子孔补偿而表现出大的磁阻;因此,薄的WTE2薄片中的费米水平钉扎可能破坏电子孔平衡并抑制大磁阻。我们表明WTE2开发类似于2nm厚的无定形表面氧化物,其将FERMI水平移位到WTE2表面上的300meV。我们还观察到薄片磁阻的显着抑制。然而,由于WTE2的半机性质,通过将双频模型拟合到运输数据,支持FERMI级别钉扎的效果并不是抑制磁阻的主导原因,这表明了电子和孔的运输数据支持载流子密度平衡至类似于13纳米。然而,该配件显示出电子和孔的迁移率的显着降低。我们将其归因于非晶表面氧化物层引入的疾病。因此,移动性降低是抑制薄的WTE2薄片的磁阻的主要因素。我们的研究突出了对通常意外的,有时不可避免的外在表面影响对分层二甲基甲基化物和其它2D材料的运输性能进行调查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号