首页> 外文期刊>ACS applied materials & interfaces >Boosting Electrochemistry of Manganese Oxide Nanosheets by Ostwald Ripening during Reduction for Fiber Electrochemical Energy Storage Device
【24h】

Boosting Electrochemistry of Manganese Oxide Nanosheets by Ostwald Ripening during Reduction for Fiber Electrochemical Energy Storage Device

机译:纤维电化学能量存储装置减少骨干熟化升高锰氧化物纳米电化学的电化学

获取原文
获取原文并翻译 | 示例
           

摘要

The poor electronic conductivity of MnOx severely limits the practical application as high-performance electrode materials for faradaic pseudocapacitors. Herein, a facile vapor reduction method is demonstrated for the treatment of MnOx with hydrazine hydrate (HH) to improve the electronic conductivity. The HH vapor treatment without annealing process not only introduces oxygen vacancies to form oxygen-deficient MnOx but also leads to obvious structural transformation from highly aggregated and poorly crystallized MnOx nanorobs and nanoparticles into uniformly orientated and highly crystallized MnOx nanosheets via the Ostwald ripening process. Compared with pristine MnOx on carbon fiber (CF-MnOx), the reduced CF-MnOx exhibits a highly improved specific capacitance of 1130 mF cm(-1) (434 F g(-1)) with excellent rate capability and cycling stability. Our results have shown that the moderate concentration of oxygen vacancies and highly uniform orientation of reduced MnOx endow the electrode with a fast electron and ion transport, respectively. Moreover, a flexible fiber asymmetric supercapacitor (ASC) device with high-energy and power density based on the as-prepared reduced CF-MnOx as a cathode and electrochemically activated graphene oxide on carbon fiber (CF-ArGO) as an anode is fabricated. The MnOx//ArGO ASC device delivers a high volumetric capacitance of 1.9 F cm(-3), a maximum energy density of 1.06 mWh cm(-3), and a volumetric power density of 371.3 mW cm(-3). The present work opens a new way for oxygen vacancy introduction and structural modification of metal oxide as high-performance materials for energy storage applications.
机译:MNX的差的电子电导率严重限制了作为游览伪偶联器的高性能电极材料的实际应用。这里,对含有肼水合物(HH)的MNOX进行证明,证明了容易蒸汽还原方法以改善电子电导率。没有退火过程的HH蒸气处理不仅引入了形成缺氧缺氧的氧空位,而且还导致从高度聚集的且结晶的MNOX纳米/纳米颗粒和纳米颗粒通过OSTWALD成熟过程均匀定向和高度结晶的MNOX纳米晶片的明显结构转变。与碳纤维(CF-MNOX)上的原始MNOX相比,还原的CF-MNOX具有高度改善的1130mF cm(-1)的比电容(434f g(-1)),具有优异的速率能力和循环稳定性。我们的研究结果表明,中等浓度的氧空位和高度均匀的减少的MNOX取向赋予了快速电子和离子传输的电极。此外,制造了一种具有高能和功率密度的柔性纤维不对称超级电容器(ASC)装置,基于所制备的CF-MNOX作为阴极和电化学活化的石墨烯氧化物作为阳极,作为阳极,作为阳极。 MNOX // ARGO ASC器件提供1.9 F CM(-3)的高容量电容,最大能量密度为1.06米,-3),和体积功率密度为371.3mw cm(-3)。本作工作开辟了一种新的氧空位介绍和金属氧化物结构改性作为能量储存应用的高性能材料。

著录项

  • 来源
    《ACS applied materials & interfaces》 |2018年第36期|共12页
  • 作者单位

    Qingdao Univ Coll Mat Sci &

    Engn Qingdao 266071 Shandong Peoples R China;

    Qingdao Univ Coll Mat Sci &

    Engn Qingdao 266071 Shandong Peoples R China;

    Univ Jinan IAIR Jinan 250022 Shandong Peoples R China;

    Qingdao Univ Coll Mat Sci &

    Engn Qingdao 266071 Shandong Peoples R China;

    Qingdao Univ Coll Mat Sci &

    Engn Qingdao 266071 Shandong Peoples R China;

    Qingdao Univ Coll Mat Sci &

    Engn Qingdao 266071 Shandong Peoples R China;

    Qingdao Univ Coll Mat Sci &

    Engn Qingdao 266071 Shandong Peoples R China;

    Qingdao Univ Coll Mat Sci &

    Engn Qingdao 266071 Shandong Peoples R China;

    Qingdao Univ Coll Mat Sci &

    Engn Qingdao 266071 Shandong Peoples R China;

    Shandong Univ State Key Lab Crystal Mat Jinan 250100 Shandong Peoples R China;

    Qingdao Univ Coll Mat Sci &

    Engn Qingdao 266071 Shandong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    supercapacitor; oxygen vacancies; Ostwald ripening; asymmetric; wearable;

    机译:超级电容器;氧气职位空缺;Ostwald成熟;不对称;可穿戴;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号