首页> 外文期刊>ACS applied materials & interfaces >Achieving Higher Strength and Sensitivity toward UV Light in Multifunctional Composites by Controlling the Thickness of Nanolayer on the Surface of Glass Fiber
【24h】

Achieving Higher Strength and Sensitivity toward UV Light in Multifunctional Composites by Controlling the Thickness of Nanolayer on the Surface of Glass Fiber

机译:通过控制玻璃纤维表面纳米层的纳米层的厚度实现更高的强度和敏感性。玻璃纤维表面的厚度

获取原文
获取原文并翻译 | 示例
       

摘要

The interphase between fiber and matrix plays an essential role in the performance of composites. Therefore, the ability to design or modify the interphase is a key technology needed to manufacture stronger and smarter composite. Recently, depositing nanomaterials onto the surface of the fiber has become a promising approach to optimize the interphase and composites. But, the modified composites have not reached the highest strength yet, because the determining parameters, such as thickness of the nanolayer, are hardly controlled by the mentioned methods in reported works. Here, we deposit conformal ZnO nanolayer with various thicknesses onto the surfaces of glass fibers via the atomic layer deposition (ALD) method and a tremendous enhancement of interfacial shear strength of composites is achieved. Importantly, a critical thickness of ZnO nanolayer is obtained for the first time, giving rise to a maximal relative enhancement in the interfacial strength, which is more than 200% of the control fiber. In addition, the single modified fiber exhibits a potential application as a flexible, transparent, in situ UV detector in composites. And, we find the UV-sensitivity also shows a strong correlation with the thickness of ZnO. To reveal the dependence of UV-sensitivity on thickness, a depletion thickness is estimated by a proposed model which is an essential guide to design the detectors with higher sensitivity. Consequently, such precise tailoring of the interphase offers an advanced way to improve and to flexibly control various macroscopic properties of multifunctional composites of the next generation.
机译:光纤和矩阵之间的相互作用在复合材料的性能中起重要作用。因此,设计或修改间间的能力是制造更强和更智能的复合材料所需的关键技术。最近,将纳米材料沉积到纤维表面上,已成为优化相互作用和复合材料的有希望的方法。但是,改进的复合材料尚未达到最高强度,因为确定参数,例如纳米层的厚度,几乎不能通过报道的作品中提到的方法控制。这里,我们通过原子层沉积(ALD)方法将具有各种厚度的各种厚度沉积在玻璃纤维的表面上,实现复合材料的界面剪切强度的巨大提高。重要的是,首次获得ZnO纳米层的临界厚度,从而产生界面强度的最大相对增强,其大于控制纤维的200%。另外,单个改性光纤表现为柔性透明,在复合材料中原位UV检测器。而且,我们发现紫外线敏感性也表现出与ZnO厚度的强烈相关性。为了揭示紫外线灵敏度对厚度的依赖性,通过提出的模型估计耗尽厚度,这是设计具有更高灵敏度的检测器的基本指南。因此,这种间作的这种精确剪裁提供了一种提高的方式来改进和灵活地控制下一代多功能复合材料的各种宏观性质。

著录项

  • 来源
    《ACS applied materials & interfaces》 |2018年第27期|共7页
  • 作者单位

    Xi An Jiao Tong Univ Elect Mat Res Lab Key Lab Minist Educ Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Elect Mat Res Lab Key Lab Minist Educ Xian 710049 Shaanxi Peoples R China;

    Leibniz Inst Polymerforsch Dresden eV Hohe Str 6 D-01069 Dresden Germany;

    Xi An Jiao Tong Univ Elect Mat Res Lab Key Lab Minist Educ Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Elect Mat Res Lab Key Lab Minist Educ Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Elect Mat Res Lab Key Lab Minist Educ Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Elect Mat Res Lab Key Lab Minist Educ Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ MOE Key Lab Biomed Informat Engn Sch Life Sci &

    Technol Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Elect Mat Res Lab Key Lab Minist Educ Xian 710049 Shaanxi Peoples R China;

    Donghua Univ Dept Appl Phys Shanghai 201620 Peoples R China;

    Simon Fraser Univ Dept Chem Burnaby BC V5A 1S6 Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    ZnO nanolayer; multifunctional composites; interfacial strength; atomic layer deposition; UV detector;

    机译:ZnO纳米组;多功能复合材料;界面强度;原子层沉积;UV探测器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号