...
首页> 外文期刊>ACS applied materials & interfaces >Electrically Conductive Shell-Protective Layer Capping on the Silicon Surface as the Anode Material for High-Performance Lithium-Ion Batteries
【24h】

Electrically Conductive Shell-Protective Layer Capping on the Silicon Surface as the Anode Material for High-Performance Lithium-Ion Batteries

机译:作为高性能锂离子电池的阳极材料上的导电壳保护层覆盖硅表面

获取原文
获取原文并翻译 | 示例
           

摘要

Rational design and construction of effective silicon (Si) electrode structures to relieve large volumetric changes that occur during the charge/discharge process remain significant challenges for the development of robust lithium-ion batteries (LIBs). Herein, we propose an electrically conductive poly[3-(potassium-4-butanoate)thiophene] (PPBT) capping layer on the Si surface ([email?protected]) to serve as the active material and be used in conjunction with a common polymer binder as an approach to tackle issues emanating from volumetric changes. The PPBT protective shell layer provides the system with tolerance toward variations in active material volume during cycling, improves the dispersion of Si nanoparticles in the binder, enhances the electrolyte uptake rate, and provides a strong adhesion force between the Si/carbon additives/current collector, thereby helping to maintain electrode integrity during the charge/discharge process. The π-conjugated polythiophene backbone structure also allows the Si core to maintain electrical contact with carbon additives and/or polymer binder, enabling the formation of effective electrical transport bridges and stabilizing solid electrolyte interphase layer growth. The integrated [email?protected]/carboxymethyl cellulose (CMC) anode exhibited high initial Coulombic efficiency (84.9%), enhanced rate capability performance, and long cycling stability with a reversible capacity of 1793 mA h g~(–1) after 200 cycles, 3.4 times higher than that of pristine Si anodes with the same CMC binder (528 mA h g~(–1)). The results suggest that the [email?protected] design presents a promising approach to promote the practical use of Si anodes in LIBs, which could be extended to other anode materials exhibiting large volume changes during lithiation/delithiation.
机译:有效硅(Si)电极结构的理性设计和构造,以减轻电荷/放电过程中发生的大容量变化,对鲁棒锂离子电池(Libs)的开发保持重大挑战。在此,我们在Si表面上提出导电聚[3-(钾-4-丁酸盐)噻吩](PPBT)覆盖层([邮箱吗?保护]),用作活性材料,并与常见一起使用聚合物粘合剂作为从体积变化发出发出问题的方法。 PPBT保护壳层提供了循环期间活性物质体积变化的耐受性的系统,改善了Si纳米颗粒在粘合剂中的分散,增强了电解质吸收率,并在Si /碳添加剂/集电器之间提供了强的粘附力从而有助于在充电/放电过程中保持电极完整性。 π缀合的聚噻吩骨架结构还允许Si核心与碳添加剂和/或聚合物粘合剂保持电接触,从而能够形成有效的电气输送桥和稳定固体电解质差异层生长。集成的[电子邮件吗?受保护的] /羧甲基纤维素(CMC)阳极表现出高初始的库仑效率(84.9%),增强的速率能力性能,并且在200次循环后可逆容量为1793mA Hg〜(-1)的长循环稳定性,比具有相同CMC粘合剂的原始Si阳极高3.4倍(528mA Hg〜(-1))。结果表明[电子邮件吗?受保护的]设计提出了一种有希望的方法来促进LIBS中的SI Anodes的实际应用,这可以扩展到在锂化/脱锂期间表现出大体积变化的其他阳极材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号