首页> 外文期刊>ACS applied materials & interfaces >Nitrogen-Induced Enhancement of Synaptic Weight Reliability in Titanium Oxide-Based Resistive Artificial Synapse and Demonstration of the Reliability Effect on the Neuromorphic System
【24h】

Nitrogen-Induced Enhancement of Synaptic Weight Reliability in Titanium Oxide-Based Resistive Artificial Synapse and Demonstration of the Reliability Effect on the Neuromorphic System

机译:氮诱导提高氧化钛基电阻人工突触中突触重量可靠性的增强及对神经系统可靠性影响的证明

获取原文
获取原文并翻译 | 示例
           

摘要

With the significant technological developments in recent times, the neuromorphic system has been receiving considerable attention owing to its parallel arithmetic, low power consumption, and high scalability. However, the low reliability of artificial synapse devices disturbs calculations and causes inaccurate results in neuromorphic systems. In this paper, we propose a stable resistive artificial synapse (RAS) device with nitrogen-doped titanium oxide (TiOx:N)-based resistive switching (RS) memory. The TiOx:N-based RAS, compared to the TiOx-based RAS, demonstrates more stable RS characteristics in current-voltage (I-V) and pulse measurements. In terms of resistance variability, the TiOx:N-based RAS demonstrates five times lower resistance variability at 1.38%, compared to 6.68% with the TiOx-based RAS. In addition, we verified the relation between the neuromorphic system and the resistance reliability of the synapse device for the first time. The pattern recognition simulation is performed using an artificial neural network (ANN) consisting of artificial synapse devices using the Modified National Institute of Standards and Technology dataset. In the simulation, the ANN with the TiOx:N-based RAS exhibited significant pattern recognition accuracy of 64.41%, while the ANN with TiOx-based RAS demonstrated only low recognition accuracy of 22.07%. According to the results of subsequent simulations, the pattern recognition accuracy exponentially decreases when the resistance variability exceeds 5%. Therefore, for implementing a stable neuromorphic system, the synapse device in the neuromorphic system has to maintain low resistance variability. The proposed nitrogen-doped synapse device is suitable for neuromorphic systems because reliable resistance variability can be obtained with only simple process steps.
机译:近期具有重要的技术发展,由于其平行算术,低功耗和高可扩展性,神经形态系统得到了相当大的关注。然而,人工突触装置的低可靠性扰乱了次态系统的差异计算和导致不准确的结果。在本文中,我们提出了一种稳定的电阻人工突触(RAS)装置,其具有氮掺杂氧化钛(TiOx:N)的电阻开关(RS)存储器。与基于TiOx的RA相比,基于TiOx:N基RAS显示了电流电压(I-V)和脉冲测量的更稳定的RS特性。在抗性变异性方面,TiOx:基于TiOx的Ras的抗性变异性降低了5倍的抗性变异性。此外,我们首次验证了神经形态系统与突触装置的电阻可靠性之间的关系。模式识别模拟使用由使用修改的国家标准和技术数据集的人工突触设备组成的人工神经网络(ANN)来执行。在模拟中,具有TiOx的ANN:基于N基RAS表现出显着的模式识别识别精度为64.41%,而基于TiOx的RAS的ANN仅显示出低识别精度为22.07%。根据随后的模拟结果,当电阻可变性超过5%时,图案识别精度指数地降低。因此,为了实现稳定的神经晶体系统,神经族系统中的突触装置必须保持低电阻变化。所提出的氮掺杂突触装置适用于神经形态系统,因为只有简单的工艺步骤可以获得可靠的电阻可变性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号