...
首页> 外文期刊>ACS applied materials & interfaces >Optoelectronic Properties of Printed Photogating Carbon Nanotube Thin Film Transistors and Their Application for Light-Stimulated Neuromorphic Devices
【24h】

Optoelectronic Properties of Printed Photogating Carbon Nanotube Thin Film Transistors and Their Application for Light-Stimulated Neuromorphic Devices

机译:印刷光光电型碳纳米管薄膜晶体管的光电性能及其对光刺激神经晶体装置的应用

获取原文
获取原文并翻译 | 示例

摘要

Artificial synapses/neurons based on electronic/ionic hybrid devices have attracted wide attention for brain-inspired neuromorphic systems since it is possible to overcome the von Neumann bottleneck of the neuromorphic computing paradigm. Here, we report a novel photo-neuromorphic device based on printed photogating single-walled carbon nanotube (SWCNT) thin film transistors (TFTs) using lightly n-doped Si as the gate electrode. The drain currents of the printed SWCNT TFTs can gradually increase to over 3000 times of their starting value after being pulsed with light stimulation, and the electrical signals can maintain for over 10 min. These characteristics are similar to the learning and memory functions of brain-inspired neuromorphic systems. The working mechanism of the light-stimulated neuromorphic devices is investigated and described here in detail. Important synaptic characteristics, such as low-pass filtering characteristics and nonvolatile memory ability, are successfully emulated in the printed light-stimulated artificial synapses. It demonstrates that the printed SWCNT TFT photoneuromorphic devices can act as the nonvolatile memory units and perform photoneuromorphic computing, which exhibits potential for future neuromorphic system applications.
机译:基于电子/离子混合装置的人工突触/神经元对脑激发的神经形态系统引起了广泛的关注,因为有可能克服神经形态计算范例的von Neumann瓶颈。在这里,我们通过用轻质N掺杂的Si作为栅电极来报告基于印刷的光镀单壁碳纳米管(SWCNT)薄膜晶体管(TFT)的新型光神经晶体器件。在用光刺激脉冲后,印刷SWCNT TFT的漏极电流可以逐渐增加到其起始值的超过3000倍,电信号可以保持超过10分钟。这些特征类似于脑激发的神经族系统的学习和记忆功能。详细研究了光刺激的神经晶体器件的工作机制并详细描述。在印刷的光刺激的人工突触中成功模拟了重要的突触特性,例如低通滤波特性和非易失性存储器能力。结果表明,印刷的SWCNT TFT光金属晶体器件可以用作非易失性存储器单元并进行光动核算计算,这表现出未来的神经形态系统应用的潜力。

著录项

  • 来源
    《ACS applied materials & interfaces》 |2019年第12期|共9页
  • 作者单位

    Univ Sci &

    Technol China Coll Nano Technol &

    Nano Bion 96 Jinzhai Rd Hefei 230026 Anhui Peoples R China;

    Chinese Acad Sci Shanghai Inst Tech Phys State Key Lab Infrared Phys 500 Yutian Rd Shanghai 200083 Peoples R China;

    Nanjing Univ Sch Elect Sci &

    Engn 163 Xianlin Rd Nanjing 210093 Jiangsu Peoples R China;

    Nanjing Univ Sch Elect Sci &

    Engn 163 Xianlin Rd Nanjing 210093 Jiangsu Peoples R China;

    Chinese Acad Sci Shanghai Inst Tech Phys State Key Lab Infrared Phys 500 Yutian Rd Shanghai 200083 Peoples R China;

    Chinese Acad Sci Shanghai Inst Tech Phys State Key Lab Infrared Phys 500 Yutian Rd Shanghai 200083 Peoples R China;

    Univ Sci &

    Technol China Coll Nano Technol &

    Nano Bion 96 Jinzhai Rd Hefei 230026 Anhui Peoples R China;

    Chinese Acad Sci Suzhou Inst Nanotech &

    Nanobion Printable Elect Res Ctr 398 Ruoshui Rd Suzhou 215123 Peoples R China;

    Chinese Acad Sci Suzhou Inst Nanotech &

    Nanobion Printable Elect Res Ctr 398 Ruoshui Rd Suzhou 215123 Peoples R China;

    Univ Sci &

    Technol China Coll Nano Technol &

    Nano Bion 96 Jinzhai Rd Hefei 230026 Anhui Peoples R China;

    Chinese Acad Sci Suzhou Inst Nanotech &

    Nanobion Printable Elect Res Ctr 398 Ruoshui Rd Suzhou 215123 Peoples R China;

    Univ Sci &

    Technol China Coll Nano Technol &

    Nano Bion 96 Jinzhai Rd Hefei 230026 Anhui Peoples R China;

    Nanjing Univ Sch Elect Sci &

    Engn 163 Xianlin Rd Nanjing 210093 Jiangsu Peoples R China;

    Chinese Acad Sci Shanghai Inst Tech Phys State Key Lab Infrared Phys 500 Yutian Rd Shanghai 200083 Peoples R China;

    Univ Sci &

    Technol China Coll Nano Technol &

    Nano Bion 96 Jinzhai Rd Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Coll Nano Technol &

    Nano Bion 96 Jinzhai Rd Hefei 230026 Anhui Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    printed thin film transistors; photogating; sc-SWCNTs; photoneuromorphic device; artificial synapses;

    机译:印刷的薄膜晶体管;光晕;SC-SWCNT;光孔晶装置;人工突触;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号