...
首页> 外文期刊>ACS applied materials & interfaces >Measuring Local Electric Fields and Local Charge Densities at Electrode Surfaces Using Graphene-Enhanced Raman Spectroscopy (GERS)-Based Stark-Shifts
【24h】

Measuring Local Electric Fields and Local Charge Densities at Electrode Surfaces Using Graphene-Enhanced Raman Spectroscopy (GERS)-Based Stark-Shifts

机译:使用石墨烯增强拉曼光谱(GERS)测量电极表面的局部电场和局部电荷密度 - 基于STARK-Shifts

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We report spectroscopic measurements of the local electric fields and local charge densities at electrode surfaces using graphene-enhanced Raman spectroscopy (GERS) based on the Stark-shifts of surface-bound molecules and the G band frequency shift in graphene. Here, monolayer graphene is used as the working electrode in a three-terminal potentiostat while Raman spectra are collected in situ under applied electrochemical potentials using a water immersion lens. First, a thin layer (1 A) of copper(II) phthalocyanine (CuPc) molecules are deposited on monolayer graphene by thermal evaporation. GERS spectra are then taken in an aqueous solution as a function of the applied electrochemical potential. The shifts in vibrational frequencies of the graphene G band and CuPc are obtained simultaneously and correlated. The upshifts in the G band Raman mode are used to determine the free carrier density in the graphene sheet under these applied potentials. Of the three dominant peaks in the Raman spectra of CuPc (i.e., 1531, 1450, and 1340 cm(-1)), only the 1531 cm(-1) peak exhibits Stark-shifts and can, thus, be used to report the local electric field strength at the electrode surface under electrochemical working conditions. Between applied electrochemical potentials from -0.8 V to 0.8 V vs NHE, the free carrier density in the graphene electrode spans a range from -4 x 10(12) cm(-2) to 2 x 10(12) cm(-2). Corresponding Stark-shifts in the CuPc peak around 15(31) cm(-1) are observed up to 1.0 cm(-1) over a range of electric field strengths between -3.78 x 10(6) and 1.85 x 10(6) V/cm. Slightly larger Stark shifts are observed in a 1 M KCl solution, compared to those observed in DI water, as expected based on the higher ion concentration of the electrolyte. Based on our data, we determine the Stark shift tuning rate to be 0.178 cm(-1)/ (10(6) V/cm), which is relatively small due to the planar nature of the CuPc molecule, which largely lies perpendicular to the electric field at this electrode surface. Computational simulations using density functional theory (DFT) predict similar Stark shifts and provide a detailed atomistic picture of the electric field-induced perturbations to the surface-bound CuPc molecules.
机译:我们使用石墨烯增强的拉曼光谱(GERS)在表面结合分子的显着偏移和石墨烯中的G带频率偏移的情况下报告电极表面的局部电场和局部电荷密度的光谱测量。这里,单层石墨烯用作三末末端恒温器中的工作电极,而使用水浸渍透镜在施加的电化学电位下原位收集拉曼光谱。首先,通过热蒸发沉积在单层石墨烯上沉积铜(II)铜(II)磷酸酞菁(CUPC)分子的薄层(1a)。然后将GERS光谱作为施加的电化学电位的函数脱离水溶液。同时获得石墨烯G频带和CUPC的振动频率的换档。 G带拉曼模式的升档用于在这些施加的电位下确定石墨烯片中的自由载体密度。在Cupc的拉曼光谱(即,1531,1450和1340cm(-1))中的三个主导峰值中,只有1531cm(-1)峰值表现出迹线偏移,因此可以用于报告电化学工作条件下电极表面处的局部电场强度。在-0.8V至0.8V的施加电化学电位之间,石墨烯电极中的自由载体密度跨越-4×10(12)cm(-2)至2×10(12)cm(-2) 。在-3.78×10(6)和1.85×10(6)之间的电场强度范围内高达1.0cm(-1)的Cupc峰值中的相应截图。 v / cm。与在DI水中观察的那些相比,在1M KCl溶液中观察到略大的STARK偏移,与在DI水中观察到的那样,基于电解质的较高离子浓度。基于我们的数据,我们将STARK移位调谐率确定为0.178cm(-1)/(10(6)v / cm),这是由于CUPC分子的平面性相对较小,这在很大程度上是垂直于该电极表面处的电场。使用密度函数理论(DFT)的计算模拟预测类似的STARK偏移并提供对表面结合的CUPC分子的电场诱导的扰动的详细原子图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号