首页> 外文期刊>ACS applied materials & interfaces >Unraveling the Morphology in Solution-Processed Pseudo-Bilayer Planar Heterojunction Organic Solar Cells
【24h】

Unraveling the Morphology in Solution-Processed Pseudo-Bilayer Planar Heterojunction Organic Solar Cells

机译:解开解决方案处理的伪双层平面异质结的形态

获取原文
获取原文并翻译 | 示例
           

摘要

The conventional bulk heterojunction (BHJ) structure is widely used for fabricating high-performance organic solar cells (OSCs) due to the nanometer-scale phase separation of the donor/acceptor component. However, the elaborate control of the BHJ morphology is difficult to carry out because the morphology evolution is such a complicated process. The compatibility requirement of materials in the same solvent restricts the structural diversity of the molecules to some extent. Meanwhile, the nanoscopic interpenetrating donor/acceptor domains reduce their crystallinity The bilayer planar heterojunction (PHJ), by contrast, possesses complementary advantages that can make it an alternative candidate to achieve device fabrication and produce different vertical stratification in heterojunction films. However, the flat contact area limits the charge separation and transmission efficiency. The sequential solution processed approach was used to facilitate material diffusion in layers. Also, solvent additives were employed to further enhance the diffusion and thus the device performance. Nevertheless, the morphology of the formed pseudo-bilayer planar heterojunction (PPHJ) has not been fully revealed yet. Here, we carefully study the morphology of the nonfullerene-based PPHJ device in three dimensions. High hole mobility of 2.09 X 10' cm2 s" and electron mobility of 7.91 X 10-5 cm2 s" were obtained in the solution-processed PPHJ device. Meanwhile, a distinct phase separation size with a vertical rearrangement of donor and acceptor was observed, which enable the pseudo-bilayer devices to be equipped with a comparable spectral response to the BHJ devices. We demonstrate that a unique device architecture (ITO/ZnO/PBDB-T/ITIC/Mo03/Ag) with a power conversion efficiency of 7% can be obtained from a larger molecular weight of PBDB-T without using extra additives. The solution-processed PPHJ films have much in common with the BHJ films. The results proposed that with appropriate molecular design and vertical phase separation optimization, the performance of the solution-processed PPHJ-based OSCs can be further improved.
机译:传统的载体异质结(BHJ)结构广泛用于制造由于供体/受体组分的纳米分层分离而制造高性能有机太阳能电池(OSC)。然而,由于形态学进化是如此复杂的过程,难以进行的详细控制BHJ形态。相同溶剂中材料的相容性要求在一定程度上限制了分子的结构分集。同时,纳米镜互持续供体/受体结构域通过对比度降低双层平面异质结(PHJ),具有可以使其成为实现装置制造的替代候选物的互补优点,并在异质结膜中产生不同的垂直分层。然而,扁平接触面积限制了电荷分离和传输效率。顺序溶液处理方法用于促进层中的材料扩散。此外,使用溶剂添加剂来进一步增强扩散,从而实现装置性能。然而,形成的伪双层平面异质结(PPHJ)的形态尚未完全揭示。在这里,我们仔细研究了三维基于非氟苯的PPHJ器件的形态。在溶液加工的PPHJ器件中获得了2.09×10'cm2s“和7.91×10 -5cm 2 s的高空穴迁移率。同时,观察到具有垂直重排和受体的不同的相分离尺寸,这使得伪双层装置能够配备有对BHJ器件的相当光谱响应。我们证明,具有7%的功率转换效率的独特设备架构(ITO / ZnO / PBDB-T / ITIC / MO03 / AG)可以从较大的PBDB-T获得,而无需使用额外的添加剂。解决方案加工的PPHJ薄膜与BHJ薄膜具有很多共同之处。结果提出,采用适当的分子设计和垂直相分离优化,可以进一步提高溶液处理的PPHJ的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号