...
首页> 外文期刊>ACS applied materials & interfaces >Fast Charge Transfer across the Li7La3Zr2O12 Solid Electrolyte/LiCoO2 Cathode Interface Enabled by an Interphase-Engineered All-Thin-Film Architecture
【24h】

Fast Charge Transfer across the Li7La3Zr2O12 Solid Electrolyte/LiCoO2 Cathode Interface Enabled by an Interphase-Engineered All-Thin-Film Architecture

机译:通过互相设计的全薄膜架构实现的Li7La3zR2O12固体电解质/ LiCoO2连接的快速电荷转移

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium garnet Li7La3Zr2O12 (LLZO) is being investigated as a potential solid electrolyte for next-generation solid-state batteries owing to its high ionic conductivity and electrochemical stability against metallic lithium and high potential cathodes. While the LLZO/Li metal anode interface has been thoroughly investigated to achieve almost negligible interface resistances, the LLZO/cathode interface still suffers from high interfacial resistances mainly due to the high-temperature sintering required for proper ceramic bonding. In this work, the LLZO solid electrolyte/LiCoO2 (LCO) cathode interface is investigated in an all-thin-film model system. This architecture provides an easy access to the interface for in situ and ex situ characterization, allowing one to identify the degradation processes taking place under high-temperature cosintering and to test solutions such as interface modifications. Introducing an in situ-lithiated Nb2O5 diffusion barrier at the interface, we were able to lower the LLZO/LCO charge transfer resistance to about 50 Omega cm(2), a 3-fold reduction with respect to previously reported values. The low interfacial resistance combined with the high conductance through the LLZO thin-film electrolyte allows one to investigate the charge transfer at high charge-discharge rates, unlike in bulk systems. At 1C, discharge capacities of about 140 mA h g(-1) were measured, and at 10C, 60% of the theoretical capacity was retained with a cycle life over 100 cycles. Besides the role of this architecture in the interface investigation, this work also constitutes a milestone in the development of thin-film solid-state batteries with higher power densities.
机译:由于其高离子电导率和用于金属锂和高潜能阴极的电化学稳定性,正在研究锂石榴石Li7La3zR2O12(LLZO)作为下一代固态电池的电位固体电解质。虽然已经彻底研究了LLZO / LI金属阳极界面以实现几乎可忽略不计的界面电阻,但LLZO /阴极接口仍然具有高界面电阻,主要是由于适当陶瓷粘合所需的高温烧结。在这项工作中,在全薄膜模型系统中研究了LLZO固​​体电解质/ LICOO2(LCO)阴极接口。该架构可以轻松访问界面,以便原位和EX原位表征,允许一个人识别在高温含量下进行的劣化过程和测试诸如接口修改的解决方案。在界面中引入in is原位的Nb2O5扩散屏障,我们能够将LLZO / LCO电荷转移性降低到约50ωcm(2),相对于先前报道的值降低3倍。与通过LLZO薄膜电解质的高电导相结合的低界面电阻允许人们研究高电荷 - 放电速率的电荷转移,与散装系统不同。在1℃下,测量约140mA H(-1)的放电容量,并且在10℃下,60%的理论能力被保留,循环寿命超过100个循环。除了这种架构在界面调查中的作用之外,这项工作还构成了一种在具有更高功率密度的薄膜固态电池开发中的里程碑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号