...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li7La3Zr2O12 Electrolyte and LiCoO2 Cathode
【24h】

Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li7La3Zr2O12 Electrolyte and LiCoO2 Cathode

机译:Li7La3zR2O12电解质和LiCoO2阴极之间接口的结构,化学和电荷转移电阻

获取原文
获取原文并翻译 | 示例

摘要

All-solid-state batteries promise significant safety and energy density advantages over liquid-electrolyte batteries. The interface between the cathode and the solid electrolyte is an important contributor to charge transfer resistance. Strong bonding of solid oxide electrolytes and cathodes requires sintering at elevated temperatures. Knowledge of the temperature dependence of the composition and charge transfer properties of this interface is important for determining the ideal sintering conditions. To understand the interfacial decomposition processes and their onset temperatures, model systems of LiCoO2 (LCO) thin films deposited on cubic Al-doped Li7La3Zr2O12 (LLZO) pellets were studied as a function of temperature using interface-sensitive techniques. X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, and energy-dispersive X-ray spectroscopy data indicated significant cation interdiffusion and structural changes starting at temperatures as low as 300 degrees C. La(2)Zr(2)O(7 )and Li2CO3 were identified as decomposition products after annealing at 500 degrees C by synchrotron X-ray diffraction. X-ray absorption spectroscopy results indicate the presence of also LaCoO3 in addition to La2Zr2O7 and Li2CO3. On the basis of electrochemical impedance spectroscopy and depth profiling of the Li distribution upon potentiostatic hold experiments on symmetric LCO vertical bar LLZO vertical bar LCO cells, the interfaces exhibited significantly increased impedance, up to 8 times that of the as-deposited samples after annealing at 500 degrees C. Our results indicate that lower-temperature processing conditions, shorter annealing time scales, and CO2-free environments are desirable for obtaining ceramic cathode|electrolyte interfaces that enable fast Li transfer and high capacity.
机译:全固态电池承诺在液体电解质电池上承担显着的安全性和能量密度优势。阴极和固体电解质之间的界面是电荷传递电阻的重要因素。固体氧化物电解质和阴极的强键合需要在升高的温度下烧结。知识该界面的组成和电荷转移性能的温度依赖性对于确定理想的烧结条件是重要的。为了了解界面分解过程及其发病温度,使用界面敏感技术研究沉积在立方Al-掺杂的Li7la3zR2O12(LLZO)粒度上的LiCoO2(LCO)薄膜的模型系统。 X射线光电子体光谱,二次离子质谱和能量分散X射线光谱数据表明,在低至300摄氏度的温度下的温度下开始的显着阳离子相互扩散和结构变化.1a(2)Zr(2)O(7)和通过同步X射线衍射在500℃下退火后鉴定为分解产物。 X射线吸收光谱结果表明除了La2ZR2O7和Li 2 CO 3之外还存在LACOO3。基于电化学阻抗光谱和锂分布的深度分析,在对称LCO垂直条LLZO垂直条LLZO垂直杆LLZO垂直条LLZO LCO细胞上,界面显着增加阻抗,在退火后的沉积样品的耐受程度显着增加了8倍我们的结果表明,较低温度的加工条件,较短的退火时间尺度和二氧化碳的环境是希望获得能够快速锂传递和高容量的陶瓷阴极接口。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号