...
首页> 外文期刊>ACS applied materials & interfaces >Designing Photocatalytic Nanostructured Antibacterial Surfaces: Why Is Black Silica Better than Black Silicon?
【24h】

Designing Photocatalytic Nanostructured Antibacterial Surfaces: Why Is Black Silica Better than Black Silicon?

机译:设计光催化纳米结构纳米结构抗菌表面:为什么黑色二氧化硅比黑色硅更好?

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The efficiency of photocatalytic antibacterial surfaces is limited by the absorption of light in it. Light absorption in photocatalytic surfaces can be enhanced by structuring it, leading to increased generation of reactive oxygen species (ROS) and hence improved bactericidal efficacy. A second, more passive methodology to kill bacteria involves the use of sharp nanostructures that mechanically disrupt the bacterial membrane. Recently, these two mechanisms were combined to form photoactive nanostructured surfaces with better antibacterial efficacy. However, the design rules for fabricating the optimal photoactive nanostructured surfaces have not been articulated. Here we show that for optimal performance it is very important to account for optoelectrical properties and geometry of the photoactive coating and the underlying pillar. We show that TiO2-coated nanopillars arrays made of SiO2, a material with a low extinction coefficient, have 73% higher bactericidal efficacies than those made of Si, a material with a high extinction coefficient. The finite element method (FEM) shows that despite the higher absorption in higher aspect ratio nanopillars, their performance is not always better. The concentration of bulk ROS saturates around 5 mu m. For taller pillars, the improvement in surface ROS concentration is minimal due to the diffusion bottleneck. Simulation results corroborate with the experimentally observed methylene blue degradation and bacterial count measurements and provide an explanation of the observed phenomenon. The guidelines for designing these optically activated photocatalyst nanopillars can be extended to other photocatalytic material after adjusting for their respective properties.
机译:光催化抗菌表面的效率受其吸收的吸收的限制。通过结构化,可以提高光催化表面的光吸收,从而提高了活性氧物质(ROS)的产生,因此改善了杀菌功效。杀灭细菌的第二种,更多的被动方法涉及使用机械地破坏细菌膜的尖锐纳米结构。最近,将这两种机制组合形成具有更好的抗菌效能的光活性纳米结构表面。然而,制造最佳光活性纳米结构表面的设计规则尚未阐明。在这里,我们表明,对于最佳性能,对于光电涂层和下面的支柱的光电性能和几何形状来说,非常重要。我们展示了由SiO2制成的TiO2涂层纳米玻璃阵列,具有低消光系数的材料具有73%的杀菌效率,而不是Si的杀菌效率,具有高消光系数的材料。有限元方法(FEM)表明,尽管在较高纵横比纳米粒子中吸收较高,但它们的性能并不总是更好。散装RO的浓度饱和约5亩。对于较高的柱子,由于扩散瓶颈,表面ROS浓度的改善是最小的。仿真结果用实验观察到的亚甲基蓝色降解和细菌计数测量得到证实,并提供了观察到的现象的解释。在调整各自的性质后,可以将这些光学活化的光催化剂纳米铝酸纳米粉颗粒设计的指南延伸到其他光催化材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号