...
首页> 外文期刊>ACS applied materials & interfaces >Unveiling Critical Insight into the Zn Metal Anode Cyclability in Mildly Acidic Aqueous Electrolytes: Implications for Aqueous Zinc Batteries
【24h】

Unveiling Critical Insight into the Zn Metal Anode Cyclability in Mildly Acidic Aqueous Electrolytes: Implications for Aqueous Zinc Batteries

机译:对温和酸性水性电解质中Zn金属阳极可循环性的关键洞察力:对锌电池的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The cost benefit and inherent safety conferred by the energy-dense metallic zinc anode and mildly acidic aqueous electrolytes are critical to aqueous zinc batteries' (AZBs) large-scale energy-storage ambition. Aggressive research efforts in the past five years have resulted in the discovery of several high-energy positive (cathode) host materials, but understanding of the Zn anode rechargeability and any influence of the electrolyte, which are critical for AZBs' practical development, remains limited. As we unravel here, under realistic test conditions, when parameters are set keeping practical applications in mind, Zn anode cycling appears vulnerable to dendritic failure in all common AZB electrolytes. While 3 M ZnSO4 delivers the best overall performance for the Zn anode cycling, viability of the oxidatively stable "water in salt" electrolyte appears gravely restricted. Defying the general understanding of metal electrodeposition, a high current density is found to dramatically prolong the Zn cycling lifetime, achieving >8000 cycles at 20 mA cm(-2) for 1 mAh cm(-2) capacity in 3 M ZnSO4. High current also allows prolonged cycling at capacities of 2 and 4 mAh cm(-2). Such a striking improvement in lifetime on going from low to high currents is further confirmed through ZnlZn(0.)(25)V(2)O(5) and Zn vertical bar LiMn2O4 full-cell studies with practical electrode loading. Not surprisingly, all the parameters influence the cycled Zn morphology, which in turn dictates the propensity for short-circuit. These findings not only divulge previously unanticipated insight into the Zn anode cycling and electrolyte performance in AZBs but also offer a rational basis to gauge their practical development.
机译:能量 - 致密金属锌阳极和温和酸性水性电解质赋予的成本效益和固有的安全性对锌电池水溶液(AZBS)大规模的能量储存野心至关重要。过去五年的积极研究努力导致了几种高能量阳性(阴极)主体材料的发现,但了解Zn阳极可再核性和电解质的任何影响,这对AZBS的实际发展至关重要,仍然有限。随着我们在此处解开,在现实的测试条件下,当设置参数时,在记住参数时,Zn阳极循环出现在所有常见的AZB电解质中易受树突故障的影响。虽然3米ZnSO4提供Zn阳极循环的最佳总体性能,但氧化稳定“盐中水”电解质的活力显然受到严格限制。缺乏对金属电沉积的一般理解,发现高电流密度显着延长Zn循环寿命,在3M ZnSO 4中以20 mA cm(-2)的20mA(-2)达到8000次循环。高电流还允许长时间循环2和4mAh cm(-2)。通过ZnLZN(0.)(25)V(2)O(5)和Zn垂直条LiMn2O4全细胞研究进一步证实,通过ZnLZN(0.)(25)V(2)o(5)和具有实际电极负载的全细胞研究进一步证实了从低到高电流的寿命的这种引人注目的改善。毫不奇怪,所有参数都会影响循环的Zn形态,这反过来决定了短路的倾向。这些调查结果不仅透露了先前意想到的Zn阳极循环和AZB的电解质性能的洞察,而且还提供了衡量其实际发展的理性基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号