首页> 外文期刊>ACS applied materials & interfaces >Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices
【24h】

Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices

机译:跨越金刚石装置的室温粘合GaN /金刚石界面的界面热传导

获取原文
获取原文并翻译 | 示例
       

摘要

The wide bandgap, high-breakdown electric field, and high carrier mobility makes GaN an ideal material for high-power and high-frequency electronics applications, such as wireless communication and radar systems. However, the performance and reliability of GaN-based high-electron-mobility transistors (HEMTs) are limited by the high channel temperature induced by Joule heating in the device channel. Integration of GaN with high thermal conductivity substrates can improve the heat extraction from GaN-based HEMTs and lower the operating temperature of the device. However, heterogeneous integration of GaN with diamond substrates presents technical challenges to maximize the heat dissipation potential brought by the ultrahigh thermal conductivity of diamond substrates. In this work, two modified room-temperature surface-activated bonding (SAB) techniques are used to bond GaN and single-crystal diamond. Time-domain thermoreflectance (TDTR) is used to measure the thermal properties from room temperature to 480 K. A relatively large thermal boundary conductance (TBC) of the GaN/diamond interfaces with a similar to 4 nm interlayer (similar to 90 MW/(m(2) K)) was observed and material characterization was performed to link the interfacial structure with the TBC. Device modeling shows that the measured TBC of the bonded GaN/diamond interfaces can enable high-power GaN devices by taking full advantage of the ultrahigh thermal conductivity of single-crystal diamond. For the modeled devices, the power density of GaN-on-diamond can reach values similar to 2.5 times higher than that of GaN-on-SiC and similar to 5.4 times higher than that of GaN-on-Si with a maximum device temperature of 250 degrees C. Our work sheds light on the potential for room-temperature heterogeneous integration of semiconductors with diamond for applications of electronics cooling, especially for GaN-on-diamond devices.
机译:宽的带隙,高击穿电场和高载波移动性使GaN成为高功率和高频电子应用的理想材料,例如无线通信和雷达系统。然而,基于GaN的高电子 - 迁移率晶体管(HEMT)的性能和可靠性受到器件通道中焦耳加热引起的高通道温度的限制。 GaN与高导热率底物的整合可以改善来自GaN的垫圈的热萃取,降低装置的工作温度。然而,GaN与金刚石基板的异构整合呈现技术挑战,以最大化由金刚石基板的超高导热率带来的散热潜力。在这项工作中,使用两个改进的室温表面活化粘合(SAB)技术用于粘合GaN和单晶金刚石。时域热反射(TDTR)用于测量从室温到480K的热性质。GaN /金刚石接口的相对大的热边电导(TBC),其具有类似于4nm中间层(类似于90 MW /(观察到m(2)k)),进行材料表征以将界面结构与TBC连接。器件建模表明,通过采用单晶金刚石的超高导热率来实现高功率GaN设备,可以实现高功率GaN设备。对于所建模的设备,GaN-on-in-in-indond的功率密度可以达到与GaN-on-SiC高的2.5倍,并且类似于具有最大器件温度的GaN-on-Si高的5.4倍250℃。我们的工作揭示了使用金刚石的金刚石的室温异质整合的电位,用于电子冷却的应用,特别是对于金刚石装置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号