...
首页> 外文期刊>ACS nano >Electrolyte Solvation Structure at Solid-Liquid Interface Probed by Nanogap Surface-Enhanced Raman Spectroscopy
【24h】

Electrolyte Solvation Structure at Solid-Liquid Interface Probed by Nanogap Surface-Enhanced Raman Spectroscopy

机译:通过Nanogap表面增强拉曼光谱法探测的固液界面处的电解质溶剂化结构

获取原文
获取原文并翻译 | 示例

摘要

Understanding the fundamental factors that drive ion solvation structure and transport is key to design high-performance, stable battery electrolytes. Reversible ion solvation and desolvation are critical to the interfacial charge transfer process across the solid-liquid interface as well as the resulting stability of the solid electrolyte interphase. Herein, we report the study of Li+ salt solvation structure in aprotic solution in the immediate vicinity (similar to 20 nm) of the solid electrode-liquid interface using surface-enhanced Raman spectroscopy (SERS) from a gold nanoparticle (Au NP) monolayer. The plasmonic coupling between Au NPs produces strong electromagnetic field enhancement in the gap region, leading to a 5 orders of magnitude increase in Raman intensity for electrolyte components and their mixtures namely, lithium hexafluorophosphate, fluoroethylene carbonate, ethylene carbonate, and diethyl carbonate. Further, we estimate and compare the lithium-ion solvation number derived from SERS, standard Raman spectroscopy, and Fourier transform infrared spectroscopy experiments to monitor and ascertain the changes in the solvation shell diameter in the confined nanogap region where there is maximum enhancement of the electric field. Our findings provide a multimodal spectroscopic approach to gain fundamental insights into the molecular structure of the electrolyte at the solid-liquid interface.
机译:了解驱动离子溶剂化结构和运输的基本因素是设计高性能,稳定电池电解质的关键。可逆离子溶剂和脱溶解对于穿过固液界面的界面电荷转移过程以及固体电解质间相互作用的稳定性至关重要。在此,我们在使用来自金纳米粒子(Au NP)单层的表面增强的拉曼光谱(SERS)在固体电极 - 液体界面的直接附近(类似于20nm)的抗质子溶液中的ZH +盐溶剂化结构的研究。 Au nps之间的等离子体耦合在间隙区域中产生强电磁场增强,导致拉曼强度增加5个电解质组分及其混合物,即六氟磷酸锂,碳酸酯,碳酸亚乙酯和碳酸二乙酯。此外,我们估计和比较衍生自SERS,标准拉曼光谱和傅立叶变换红外光谱实验的锂离子溶剂编号,以监测和确定受限纳米隙区域中溶剂化壳体直径的变化,其中电动的最大增强场地。我们的研究结果提供了一种多模式光谱方法,以获得固体液体界面处的电解质的分子结构的基本洞察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号