...
首页> 外文期刊>ACS nano >Controlling the Revolving and Rotating Motion Direction of Asymmetric Hexameric Nanomotor by Arginine Finger and Channel Chirality
【24h】

Controlling the Revolving and Rotating Motion Direction of Asymmetric Hexameric Nanomotor by Arginine Finger and Channel Chirality

机译:通过精氨酸手指和通道手性控制不对称六聚体纳米热量的旋转和旋转运动方向

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nanomotors in nanotechnology are as important as engines in daily life. Many ATPases are nanoscale biomotors classified into three categories based on the motion mechanisms in transporting substrates: linear, rotating, and the recently discovered revolving motion. Most biomotors adopt a multisubunit ring-shaped structure that hydrolyzes ATP to generate force. How these biomotors control the motion direction and regulate the sequential action of their multiple subunits is intriguing. Many ATPases are hexameric with each monomer containing a conserved arginine finger. This review focuses on recent findings on how the arginine finger controls motion direction and coordinates adjacent subunit interactions in both revolving and rotating biomotors. Mechanisms of intersubunit interactions and sequential movements of individual subunits are evidenced by the asymmetrical appearance of one dimer and four monomers in high-resolution structural complexes. The arginine finger is situated at the interface of two subunits and extends into the ATP binding pocket of the downstream subunit. An arginine finger mutation results in deficiency in ATP binding/hydrolysis, substrate binding, and transport, highlighting the importance of the arginine finger in regulating energy transduction and motor function. Additionally, the roles of channel chirality and channel size are discussed as related to controlling one-way trafficking and differentiating the revolving and rotating mechanisms. Finally, the review concludes by discussing the conformational changes and entropy conversion triggered by ATP binding/hydrolysis, offering a view different from the traditional concept of ATP-mediated mechanochemical energy coupling. The elucidation of the motion mechanism and direction control in ATPases could facilitate nanomotor fabrication in nanotechnology.
机译:纳米技术中的纳米热管与日常生活中的发动机一样重要。许多ATPASES是基于运输基板的运动机制的三类纳米级生物接受器:线性,旋转和最近发现的旋转运动。大多数生物接受器采用多层环形结构,使ATP水解以产生力。这些生物接管如何控制运动方向并调节其多个亚基的连续动作是有趣的。许多ATP酶是六聚体,其中每种单体含有保守的精氨酸手指。本综述重点介绍了最近的精氨酸手指如何控制运动方向并坐标在旋转和旋转生物接受器中的相邻亚基相互作用。各个亚基的梭螺轴相互作用和顺序运动的机制可通过高分辨率结构络合物中的一种二聚体和四种单体的不对称外观来证明。精氨酸手指位于两个亚基的界面,并延伸到下游亚基的ATP绑定口袋中。精氨酸指突变导致ATP结合/水解,底物结合和运输的缺乏,突出了精氨酸手指在调节能量转导和运动功能方面的重要性。另外,讨论了渠道手平性和信道大小的角色与控制单向运输和区分旋转和旋转机制有关。最后,审查通过讨论ATP结合/水解触发的构象变化和熵转换来结束,提供不同于ATP介导的机械化学能量耦合的传统概念的视图。在ATP酶中阐明运动机构和方向控制可以促进纳米技术中的纳米运动制造。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号