首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Interaction mechanisms of antibiotic sulfamethoxazole with various graphene-based materials and multiwall carbon nanotubes and the effect of humic acid in water
【24h】

Interaction mechanisms of antibiotic sulfamethoxazole with various graphene-based materials and multiwall carbon nanotubes and the effect of humic acid in water

机译:抗生素磺胺甲氧唑与各种石墨烯基材料的相互作用机制及多壁碳纳米管及腐殖酸在水中的作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We studied the interaction mechanisms between carbonaceous nanomaterials (CNMs) and sulfamethoxazole (SMX) to elucidate their adsorption behaviors. Three graphene-based materials, reduced graphene oxide (rGO), graphene oxide (GO), and graphene nanoplatelet pastes (GNP), and five multiwalled carbon nanotubes (MWCNTs), MWCNT10, MWCNT15, MWCNT15-OH, MWCNT15-COOH, and N-doped MWCNTs, were used as sorbents. Oxygen-containing functional groups and graphene wrinkling suppressed SMX adsorption on GO and GNPs due to fewer Csp(2) ring sites for pi-pi stacking and fewer accessible flat surface adsorption sites, respectively. Ring current-induced H-1 NMR upfield chemical shifts increased as the pi-donor concentration increased, as well as pi-donor strength of polycyclic aromatic hydrocarbons (PAHs) (pyrene > phenanthrene > naphthalene) as model graphene compounds, suggesting that pi-pi interaction strength of SMX with PAHs associated with pi-donor strength. Moreover, H-1 NMR results further verified that carboxylic and hydroxyl groups in PAHs (9-phenanthrol and 3-phenanthrenecarboxylic acid) weakened the complexation between SMX and the graphitic surface. Additionally, the morphologies of rGO and MWCNT10 were observed using AFM, and transformed from being linear to scattered as the loading dose of the humic acid increased. Our results are useful to understand the distinct interaction mechanisms and subsequent adsorption behaviors resulting from various carbon nanomaterials with SMX in water. (C) 2016 Elsevier Ltd. All rights reserved.
机译:我们研究了碳纳米材料(CNMS)和磺胺甲恶唑(SMX)之间的相互作用机制,以阐明其吸附行为。三种基于石墨烯的材料,氧化石墨烯(RGO),氧化石墨烯(GO)和石墨烯纳米型浆料(GNP)和五个多壁碳纳米管(MWCNT),MWCNT10,MWCNT15,MWCNT15-OH,MWCNT15-COOH和N - 用作吸附剂的MWCNT。由于PI-PI堆叠的CSP(2)环部位和更少的可接近的平坦表面吸附位点,含氧官能团和石墨烯皱纹抑制了Go和GNPS的SMX吸附。随着Pi-供体浓度的增加,环电流诱导的H-1 NMR Upfield化学位移增加,以及多环芳烃(PAHS)(芘>苯苯甲烷)作为模型石墨烯化合物的PI-供体强度,表明PI- PI与PI型强度相关的SMX相互作用强度。此外,H-1 NMR结果进一步验证了PAHS中的羧酸和羟基(9-菲醇和3-膦酸羧酸)削弱了SMX和石墨表面之间的络合。另外,使用AFM观察RGO和MWCNT10的形态,并且随着腐殖酸的装载剂量增加而转化为散射的线性转化。我们的结果可用于了解不同碳纳米物质与水中的各种碳纳米材料导致的不同的相互作用机制和随后的吸附行为有助于。 (c)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号