...
首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor
【24h】

Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor

机译:用于高性能超级电容器的自支撑活性炭/碳纳米管/氧化石墨烯柔性电极

获取原文
获取原文并翻译 | 示例
           

摘要

A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high-performance supercapacitor. The AC/CNT/RGO film is prepared by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van derWaals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promising electrode for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. The AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g(-1) at the current density of 0.2 A g(-1), offering a maximum energy density of 30.0 W h kg(-1) in organic electrolyte at the cut-off voltage range of 0.001-3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor. (C) 2017 Elsevier Ltd. All rights reserved.
机译:自支撑和柔韧的活性炭/碳纳米管/氧化物(AC / CNT / RGO)薄膜已合理设计用于构建高性能超级电容器。通过使用其内在范德德力堆积1d cnt和2d rgo来锚固AC / CNT / Rgo膜来制备AC / CNT / Rgo膜。 CNT网络有利于提高电极的电子电导率,而AC颗粒由于其阻塞效果而有效地抑制RGO和CNT的聚集。 AC,CNT和RGO之间的协同作用将AC / CNT / RGO验证为超级电容器的有希望的电极,与纯RGO膜,纯CNT膜和AC电极相比,具有大大增强的电化学性能。 AC / CNT / RGO电极以0.2Ag(-1)的电流密度,在电流密度下提供高比电容,在有机电解质中提供30.0Wh kg(-1)的最大能量密度截止电压范围为0.001-3.0 V.这项工作的调查结果开辟了一种新的途径,用于开发柔性和轻量级储能超级电容器的自支撑电极。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号