首页> 外文OA文献 >MnOx/carbon nanotube/reduced graphene oxide nanohybrids as high-performance supercapacitor electrodes
【2h】

MnOx/carbon nanotube/reduced graphene oxide nanohybrids as high-performance supercapacitor electrodes

机译:MnOx /碳纳米管/还原氧化石墨烯纳米杂化物作为高性能超级电容器电极

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanohybrids consisting of both carbon and pseudocapacitive metal oxides are promising as high-performance electrodes to meet the key energy and power requirements of supercapacitors. However, the development of high-performance nanohybrids with controllable size, density, composition and morphology remains a formidable challenge. Here, we present a simple and robust approach to integrating manganese oxide (MnO) nanoparticles onto flexible graphite paper using an ultrathin carbon nanotube/reduced graphene oxide (CNT/RGO) supporting layer. Supercapacitor electrodes employing the MnO/CNT/RGO nanohybrids without any conductive additives or binders yield a specific capacitance of 1070 F g at 10 mV s, which is among the highest values reported for a range of hybrid structures and is close to the theoretical capacity of MnO. Moreover, atmospheric-pressure plasmas are used to functionalize the CNT/RGO supporting layer to improve the adhesion of MnO nanoparticles, which results in theimproved cycling stability of the nanohybrid electrodes. These results provide information for the utilization of nanohybrids and plasma-related effects to synergistically enhance the performance of supercapacitors and may create new opportunities in areas such as catalysts, photosynthesis and electrochemical sensors.
机译:由碳和拟电容金属氧化物组成的纳米混合材料有望作为高性能电极满足超级电容器的关键能量和功率要求。然而,具有可控制的大小,密度,组成和形态的高性能纳米杂交体的开发仍然是一个巨大的挑战。在这里,我们提出了一种使用超薄碳纳米管/氧化石墨烯(CNT / RGO)支撑层将氧化锰(MnO)纳米颗粒整合到柔性石墨纸上的简单而可靠的方法。使用MnO / CNT / RGO纳米杂化物而没有任何导电添加剂或粘合剂的超级电容器电极在10 mV s时产生的比电容为1070 F g,是报道的一系列混合结构的最高值之​​一,与理论容量接近氧化锰此外,大气压等离子体被用于官能化CNT / RGO支撑层以改善MnO纳米颗粒的附着力,从而改善了纳米混合电极的循环稳定性。这些结果为纳米杂化的利用和与等离子体相关的效应提供信息,以协同增强超级电容器的性能,并可能在催化剂,光合作用和电化学传感器等领域创造新的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号