...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Ammonium Vanadium Bronze (NH4V4O10) as a High-Capacity Cathode Material for Nonaqueous Magnesium-Ion Batteries
【24h】

Ammonium Vanadium Bronze (NH4V4O10) as a High-Capacity Cathode Material for Nonaqueous Magnesium-Ion Batteries

机译:钒青铜(NH4V4O10)作为非水镁离子电池的高容量阴极材料

获取原文
获取原文并翻译 | 示例

摘要

Magnesium-ion batteries (MIBs) offer improved safety, lower cost, and higher energy capacity. However, lack of cathode materials with considerable capacities in conventional nonaqueous electrolyte at ambient temperature is one of the great challenges for their practical applications. Here, we present high magnesium-ion storage performance and evidence for the electrochemical magnesiation of ammonium vanadium bronze NH4V4O10 as a cathode material for MIBs. NH4V4O10 was synthesized via a conventional hydrothermal reaction. It shows reversible magnesiation with an initial discharge capacity of 174.8 mAh g(-1) and the average discharge voltage of similar to 2.31 V (vs Mg/Mg2+) using 0.5 M Mg(ClO4)2 in acetonitrile as the electrolyte. Cyclic voltammetry, galvanostatic, discharge-charge, FTIR, XPS, powder XRD, and elemental analyses unequivocally show evidence for the reversible magnesiation of the material and suggest that keeping the ammonium ions in the interlayer space of NH4V4O10 could be crucial for the structural stability with a sacrifice of initial capacity but much enhanced retention capacity. This is the first demonstration of electrochemical magnesiation with a high capacity above 2V (vs Mg/Mg2+) using a conventional organic electrolyte with a relatively low water concentration.
机译:镁离子电池(MIBS)提供了改进的安全性,更低的成本和更高的能量。然而,在环境温度下缺乏具有相当容量的阴极材料,是其实际应用的巨大挑战之一。在这里,我们向钒青铜NH4O10的电化学镁作为MIBS的阴极材料提供高镁离子储存性能和证据。通过常规的水热反应合成NH4V4O10。它显示了初始放电容量为174.8mAhg(-1)的可逆磁极,以及在乙腈中的0.5m镁(ClO 4)2的2.31V(vsmg / mg2 +)作为电解质的平均放电电压。循环伏安法,电镀,放电电荷,FTIR,XPS,粉末XRD和元素分析明确地显示了材料可逆磁极化的证据,并表明将铵离子保持在NH4V4O10的中间间空间中对于结构稳定性至关重要牺牲初始能力,但增强了保留能力。这是使用具有相对低水浓度的常规有机电解质的2V(Vs Mg / Mg2 +)高容量高容量的电化学氧化镁的第一演示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号