首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Transport and Morphology of a Proton Exchange Membrane Based on a Doubly Functionalized Perfluorosulfonic Imide Side Chain Perflourinated Polymer
【24h】

Transport and Morphology of a Proton Exchange Membrane Based on a Doubly Functionalized Perfluorosulfonic Imide Side Chain Perflourinated Polymer

机译:基于双官能化全氟核酰亚胺侧链侧链平灌聚合物的质子交换膜的运输和形貌

获取原文
获取原文并翻译 | 示例
           

摘要

There is a critical need for higher performing proton exchange membranes for electrochemical energy conversion devices that would enable higher temperature and drier operating conditions to be utilized. A novel approach is to utilize multiacid side chains in a perfluorinated polymer, maintaining the mechanical properties of the material, while dramatically increasing the ion-exchange capacity; however, as we show in this paper, the more complex side chain gives rise to unexpected physical phenomena in the material. We have thoroughly investigated a doubly functionalized. perfluorosulfonic imide acid side chain perfluorinated polymer (PFIA), the simplest of many possible multiacid side chains currently being developed. The material is compared to its simpler perfluorosulfonic acid (PFSA) analogue via a battery of characterization and modeling investigations. The doubly functional side chain profoundly influences the properties of the PFIA polymer as it gives rise to both inter- and intraside chain interactions. These affect the nature of thermal decomposition of the material but, more importantly, force the backbone of the polymer into an unusually highly ordered more crystalline configuration. Under water saturated conditions, the PFIA has the same proton conductivity as the PFSA material, indicating that the additional proton does not contribute to the ionic conductivity, but the PFIA shows higher proton conductivity at lower RH conditions owing to dynamic changes in its local molecular environment. A transition is observed between 30 and 60 degrees C, indicating an order/disorder transition that is not present in the PFSA analogue. The mechanism of proton transport in the PFIA is due to more delocalized protons and more flexible side chains with better-dispersed, smaller water clusters forming the hydrophilic domains than in the PFSA analogue.
机译:对于电化学能量转换装置的更高性能的质子交换膜具有较为关键的需要,该电化学能量转换装置将能够利用更高的温度和更干燥的操作条件。一种新方法是利用全氟化聚合物中的多态侧链,保持材料的机械性能,同时显着增加离子交换能力;然而,正如我们在本文中所展示的那样,更复杂的侧链引起了材料中的意外物理现象。我们已经彻底调查了双重功能化。全氟核酰亚胺酸侧链全氟化聚合物(PFIA),最简单的许多可能的多态侧链目前正在开发。将该材料与其更简单的全氟磺酸(PFSA)类似物通过电池进行了表征和建模研究。双重功能侧链深刻地影响PFIA聚合物的性质,因为它产生了血糖和肠道链间相互作用。这些影响材料的热分解性质,但更重要的是,将聚合物的主链施力成异常高度有序的更新的结晶构型。在水饱和条件下,PFIA具有与PFSA材料相同的质子电导率,表明另外的质子对离子电导率没有贡献,但由于其局部分子环境的动态变化,PFIA在较低的RH条件下显示出更高的质子电导率。观察到在30到60摄氏度之间的转变,表明PFSA模拟中不存在的顺序/疾病转变。 PFIA中质子传输的机制是由于具有更好分散的质子和更柔性的侧链,具有更好的分散的较小水簇,形成亲水结构域而不是PFSA类似物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号