首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Toward Long-Life, Ultrahigh-Nickel Layered Oxide Cathodes for Lithium-Ion Batteries: Optimizing the Interphase Chemistry with a Dual-Functional Polymer
【24h】

Toward Long-Life, Ultrahigh-Nickel Layered Oxide Cathodes for Lithium-Ion Batteries: Optimizing the Interphase Chemistry with a Dual-Functional Polymer

机译:朝向长寿命,用于锂离子电池的超高镍层状氧化物阴极:用双官能聚合物优化间差异化学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Boosting the Ni content in LiMO2 (M = Ni, Co, Mn, etc.) layered oxides is a promising way to establish high-energy-density, low-cost cathodes, but the poor cathode surface stability is a daunting challenge for their practical viability. Herein, by constructing a dual-functional binder framework with a conductive polymer-polyaniline (PANI), the ultrahigh-Ni layered oxide cathode (LiNi0.94Co0.06O2) exhibits significantly improved cyclability, with a capacity retention greatly increased from 47% to 81% over 1000 cycles in full cells. It is demonstrated that the acidic species (e.g., HF) in the electrolyte can be efficiently scavenged through a protonation process of PANI, hence the cathode surface reactivity is greatly suppressed, and the rock-salt phase propagation into bulk structure is considerably alleviated. Furthermore, the PANT binder system effectively prevents both the cathode-electrolyte interphase (CEI) and the anode-electrolyte interphase (AEI) from degrading to a thick "triple-layer" architecture upon extensive cycling, resulting in more robust, thinner CEI and AEI with regulated interphasial chemistry. Moreover, the delocalized pi-conjugated electrons along the backbone of PANI facilitate fast electron transfer and promote rate capability even at low temperatures (-20 degrees C). This work sheds light on rational binder engineering for developing high-energy-density lithium-ion batteries with acceptable cycle life.
机译:促进LIMO2(M = NI,CO,Mn等)中的NI含量是建立高能密度,低成本阴极的有希望的方法,但阴极表面稳定性差是它们的实际艰巨的挑战可行性。在此,通过用导电聚合物 - 聚苯胺(PANI)构建双官能粘合剂框架,超高Ni层状氧化物阴极(LINI0.94CO0.06O2)表现出显着改善的可循环性,容量保持从47%增加到81完整细胞中%超过1000个周期。结果证明,电解质中的酸性物质(例如,HF)可以通过PANI的质子化过程有效地清除,因此极大地抑制了阴极表面反应性,并且岩盐相传在块状结构中被显着缓解。此外,裤子粘合剂系统有效地防止阴极电解质相互作用(CEI)和阳极电解质相互作用(AEI)在广泛的循环时从较厚的“三层”架构中的较厚“三层”架构,导致更强大,更薄的CEI和AEI具有受管制的间间化学。此外,沿着PANI的骨架的分层PI缀合电子促进了快速电子转移,即使在低温下促进速率能力(-20℃)。这项工作揭示了具有可接受的循环寿命的高能密度锂离子电池的Rational Binder工程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号