...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Origin of the High Donor Acceptor Composition Tolerance in Device Performance and Mechanical Robustness of All-Polymer Solar Cells
【24h】

Origin of the High Donor Acceptor Composition Tolerance in Device Performance and Mechanical Robustness of All-Polymer Solar Cells

机译:在所有聚合物太阳能电池的装置性能和机械稳健性中,高供体受体组合物耐受的起源

获取原文
获取原文并翻译 | 示例
           

摘要

High tolerance regarding photovoltaic performance in terms of donor:acceptor (D:A) composition ratio is reported for all-polymer solar cells (all-PSCs), which is a crucial advantage in producing large-scale devices with high reproducibility. To understand the origin of high D:A ratio tolerance in all-PSCs, we investigate the molecular weight (MW) effects of the P(NDI2OD-T2) polymer acceptor (PA) on photovoltaic and mechanical robustness of PBDB-T:P(NDI2OD-T2) all-PSCs. Also, we compare the all-PSCs with other types of PSCs consisting of the same polymer donor but using small molecule acceptors (SMAs) including ITIC and PC71BM. We observe that the D:A ratio tolerances of both the photovoltaic and mechanical properties are highly dependent on the P-A MW and the acceptor material types. For example, at a high D:A ratio of 15:1, all-PSCs using high MW P-A (number-average molecular weight (M-n) = 97 kg mol(-1)) exhibit 13 times higher normalized power conversion efficiency (PCE) than all-PSCs using low MW P-A (M-n = 11 kg mol(-1)), and 20 times higher than ITIC-based PSCs. In addition, the electron mobilities in all-PSCs based on high MW PA are well-maintained even at very high D:A ratio, whereas the electron mobilities in low MW P-A all-PSCs and SMA-based PSCs decrease by 3- and 4-orders of magnitude, respectively, when the D:A ratio increases from 1:1 to 15:1. Thus, we suggest that the formation of tie molecules and chain entanglements by long polymer chains bridging adjacent crystalline domains is the main origin of excellent D:A tolerance in both mechanical robustness and photovoltaic performance. This work provides an important material design guideline for the reproducible production of flexible and stretchable all-PSCs.
机译:关于供体中的光伏性能的高耐受性:对所有聚合物太阳能电池(ALL-PSC)报告了受体(D:A)组成比,这是生产具有高再现性的大规模装置的重要优势。要了解高D的起源:All-PSC中的比例耐受性,我们研究了P(NDI2OD-T2)聚合物受体(PA)对PBDB-T的光伏和机械稳健性的分子量(MW)效应( NDI2OD-T2)全PSC。此外,我们将所有PSC与其他类型的PSC进行比较,其由相同的聚合物供体组成,但使用包括ITIC和PC71BM的小分子受体(SMA)。我们观察到D:光伏和机械性能的比率容差高度依赖于P-A MW和受体材料类型。例如,在高D:15:1的比例下,使用高MW PA的全-SPS(数均分子量(Mn)= 97kg mol(-1))表现出较高的归一化功率转换效率(PCE )除了使用低MW PA(Mn = 11kg mol(-1))的全-SPS,以及比基于ITIC的PSC高出20倍。此外,即使在非常高的D:A比率,基于高MW PA的All-PSC中的电子迁移率也是良好的维持,而低MW PA全-SPS和基于SMA的PSC中的电子迁移率降低3-和4当D:比率从1:1到15:1增加时,分别为数量幅度。因此,我们建议使用长聚合物链桥接相邻结晶结构域的连带分子和链缠结的形成是优异D的主要来源:机械稳健性和光伏性能的耐受性。这项工作提供了一种重要的材料设计指南,可重复生产灵活和可伸缩的全PSC。

著录项

  • 来源
  • 作者单位

    Korea Adv Inst Sci &

    Technol Dept Chem &

    Biomol Engn Daejeon 34141 South Korea;

    Korea Adv Inst Sci &

    Technol Dept Mech Engn Daejeon 34141 South Korea;

    Korea Adv Inst Sci &

    Technol Dept Chem &

    Biomol Engn Daejeon 34141 South Korea;

    Korea Adv Inst Sci &

    Technol Dept Chem &

    Biomol Engn Daejeon 34141 South Korea;

    Korea Adv Inst Sci &

    Technol Dept Chem &

    Biomol Engn Daejeon 34141 South Korea;

    Khalifa Univ Dept Mech Engn Abu Dhabi 127788 U Arab Emirates;

    Kumoh Natl Inst Technol Dept Polymer Sci &

    Engn Gumi Si 39177 Gyeongbuk South Korea;

    Korea Adv Inst Sci &

    Technol Dept Mech Engn Daejeon 34141 South Korea;

    Korea Adv Inst Sci &

    Technol Dept Chem &

    Biomol Engn Daejeon 34141 South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号