首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Probing Electrochemically Induced Structural Evolution and Oxygen Redox Reactions in Layered Lithium Iridate
【24h】

Probing Electrochemically Induced Structural Evolution and Oxygen Redox Reactions in Layered Lithium Iridate

机译:探讨层状锂亚亚酯中的电化学诱导的结构演化和氧氧化还原反应

获取原文
获取原文并翻译 | 示例
           

摘要

In order to exploit electrochemical capacity beyond the traditionally utilized transition-metal redox reactions in lithium-metal-oxide cathode materials, it is necessary to understand the role that oxygen ions play in the charge compensation mechanisms, that is, to know the conditions triggering electron transfer on the oxygen ions and whether this transfer is correlated with battery capacity. Theoretical and experimental investigations of a model cathode material, Li-rich layered Li2IrO3, have been performed to study the structural and electronic changes induced by electrochemical delithiation in a lithium-ion cell. First-principles density functional theory (DFT) calculations were used to compute the voltage profile of a Li/Li2-xIrO3 cell at various states of charge, and the results were in good agreement with electrochemical data. Electron energy loss spectroscopy (EELS), X-ray absorption near-edge spectroscopy (XANES), resonant/nonresonant X-ray emission spectroscopy (XES), and first-principles core-level spectra simulations using the Bethe Salpeter Equation (BSE) approach were used to probe the change in oxygen electronic states over the x = 0-1.5 range. The correlated Ir M-3-edge XANES and 0 K-edge XANES data provided evidence that oxygen hole states form during the early stage of delithiation at similar to 3.5 V because of the interaction between O p and Ir d states, with Ir-oxidation being the dominant source of electrochemical capacity. At higher potentials, the charge capacity was predominantly attributed to oxidation of the O2- ions. It is argued that the emergence of oxygen holes alone is not necessarily indicative of electrochemical capacity beyond transition-metal oxidation because oxygen hole states can appear as a result of enhanced mixing of O p and Ir d states. Prevailing mechanisms accounting for the oxygen redox mechanism in Li-rich materials were examined by theoretical and experimental Xray spectroscopy; however, no unambiguous spectroscopic signatures of oxygen dimer interactions or nonbonding oxygen states were identified.
机译:为了利用超出传统使用的过渡金属氧化钠反应的电化学能力在锂金属 - 氧化物阴极材料中,有必要了解氧离子在电荷补偿机构中起作用的作用,即知道触发电子的条件在氧离子上传递以及该转移是否与电池容量相关。已经进行了模型阴极材料的理论和实验研究,锂富含层状Li2iro3,以研究锂离子电池中电化学型脱位诱导的结构和电子变化。第一原理密度函数理论(DFT)计算用于计算各种态的Li / Li2-Xiro3电池的电压分布,结果与电化学数据吻合良好。电子能量损失光谱(EEL),X射线吸收近边谱(XANES),谐振/非族聚乙烯发射光谱(XES),以及使用贝特拉伯格方程(BSE)方法的第一原理核心谱谱模拟用于探测X = 0-1.5范围内氧气电子状态的变化。相关的IR M-3边缘XAN和0 k边缘XANES数据提供了由于O P和IR D源之间的相互作用而在类似于3.5V的脱脂期间形成的氧气孔状态。作为电化学能力的主导来源。在较高的电位下,充电容量主要归因于O 2的氧化。认为单独的氧气孔的出现不一定指示超越过渡金属氧化的电化学能力,因为氧气孔状态可能出现由于O P和IR D状态的增强混合而出现。通过理论和实验X射线光谱检查锂富含材料氧氧化还原机制的普遍机制;然而,鉴定了氧二聚体相互作用或非合并氧态的明确光谱签名。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号