首页> 外文期刊>Chemistry: A European journal >Quantum Interference Enhanced Chemical Responsivity in Single-Molecule Dithienoborepin Junctions
【24h】

Quantum Interference Enhanced Chemical Responsivity in Single-Molecule Dithienoborepin Junctions

机译:量子干扰在单分子Dithienoborepin结中提高了化学响应性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Providing a chemical control over charge transport through molecular junctions is vital to developing sensing applications at the single-molecule scale. Quantum-interference effects that affect the charge transport through molecules offer a unique chance to enhance the chemical control. Here, we investigate how interference effects can be harnessed to optimize the response of single molecule dithienoborepin (DTB) junctions to the specific coordination of a fluoride ion in solution. The single-molecule conductance of two DTB isomers is measured using scanning tunneling microscopy break-junction (STM-BJ) before and after fluoride ion exposure. We find a significant change of conductance before and after the capture of a fluoride ion, the magnitude of which depends on the position of the boron atom in the molecular structure. This single-molecule sensor exhibits switching ratios of up to four orders of magnitudes, suggesting that the boron-fluoride coordination can lead to quantum-interference effects. This is confirmed by a quantum chemical characterization, pointing toward a cross-conjugated path through the molecular structure as the origin of the effect.
机译:通过分子交叉点提供对电荷传输的化学控制对于在单分子规模中开发感测应用至关重要。通过分子影响电荷输送的量子干扰效应提供了增强化学控制的独特机会。在这里,我们研究如何利用干扰效应,以优化单分子Dithienoborepin(DTB)连接对溶液中氟离子的具体配位的响应。在氟化物离子暴露之前和之后使用扫描隧穿显微镜断裂结(STM-BJ)测量两种DTB异构体的单分子电导。我们在捕获氟离子捕获之前和之后发现了显着的电导变化,其大小取决于硼原子在分子结构中的位置。该单分子传感器表现出最多四个大小的开关比,表明硼 - 氟化物配位可能导致量子干扰效应。这通过量子化学表征来证实,指向通过分子结构作为效果的起源的交叉共轭路径。

著录项

  • 来源
    《Chemistry: A European journal》 |2019年第66期|共6页
  • 作者单位

    Transport at Nanoscale Interface Laboratory Empa Swiss Federal Laboratories for Materials Science and Technology 8600 Debendorf (Switzerland);

    Department of Physics University of Mons 20 place du parc 7000 Mons (Belgium);

    Department of Physics and Department of Chemistry Illinois State University Moulton Hall (USA);

    Department of Chemistry and Department of Materials Science and Engineering Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 (USA);

    Transport at Nanoscale Interface Laboratory Empa Swiss Federal Laboratories for Materials Science and Technology 8600 Debendorf (Switzerland);

    Department of Chemistry and Department of Materials Science and Engineering Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 (USA);

    Transport at Nanoscale Interface Laboratory Empa Swiss Federal Laboratories for Materials Science and Technology 8600 Debendorf (Switzerland);

    Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern (Switzerland);

    Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern (Switzerland);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用化学;
  • 关键词

    break-junction technique; fluoride ions; quantum interference; scanning tunneling microscopy; single-molecule charge transport;

    机译:断裂技术;氟离子;量子干扰;扫描隧道显微镜;单分子电荷运输;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号