首页> 外文期刊>Chemical engineering journal >Control of energy band, layer structure and vacancy defect of graphitic carbon nitride by intercalated hydrogen bond effect of NO3- toward improving photocatalytic performance
【24h】

Control of energy band, layer structure and vacancy defect of graphitic carbon nitride by intercalated hydrogen bond effect of NO3- toward improving photocatalytic performance

机译:NO3 - 改善光催化性能的插层氢粘合效应的石墨氮化物能带,层结构和空位缺陷的控制

获取原文
获取原文并翻译 | 示例
           

摘要

Simultaneously exploration control of energy band, layer structure and vacancy defect of semiconductor photocatalysts for hydrogen (H-2) evolution is highly desirable. For this purpose, the ultrathin graphitic carbon nitride (ug-C3N4) are prepared by intercalated hydrogen bond effect of NO3- for the first time reported. More importantly, the thickness, band gap energy, specific surface area and nitrogen vacancy intensity of ug-C3N4 nanosheets can be controlled by the concentration of NO3- in the inserted layer. The method not only endow ug-C3N4 nanosheets with super large specific surface area and nitrogen vacancy-rich that provide more active sites and speed up the photogenerated charge transfer, but also possess suitable conduction band position and thus more conducive to H-2 production. The photocatalytic performance of ug-C3N4 for H-2 evolution (836.3 mu mol h(-1) g(-1)) and 2-Mercaptobenzothiazole (MBT) decomposition (84%) is significantly enhanced by energy band, layer structure and vacancy defect optimization, which is over 4.0 and 1.75 times higher than the bulk g-C3N4 powder. We firmly believe that the work emblems a significant step toward control engineering for energy conversion and environmental pollution.
机译:同时探索能量带,层结构和氢催化剂的半导体光催化剂的空位缺陷是非常理想的。为此目的,通过第一次报道的NO 3的插层氢键效应来制备超薄石墨碳氮化物(UG-C3N4)。更重要的是,UG-C3N4纳米片的厚度,带隙能量,比表面积和氮空位强度可以通过插入层中的NO 3-浓度控制。该方法不仅赋予UG-C3N4纳米片,具有超大的比表面积和氮气空位,提供更多的活性位点并加速光生电荷转移,而且还具有合适的导带位置,从而有利于H-2的产生。通过能带,层结构和空缺显着增强UG-2进化(836.3μmolH(-1)克(-1)克(-1)克(MBT)分解(84%)的光催化性能缺陷优化,比散装G-C3N4粉末高出4.0%和1.75倍。我们坚信,该工作标志对控制工程进行了重大步骤,以获得能量转换和环境污染。

著录项

  • 来源
    《Chemical engineering journal》 |2019年第2019期|共11页
  • 作者单位

    Jiangsu Univ Sch Chem &

    Chem Engn Zhenjiang 212013 Peoples R China;

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Green Chem &

    Chem Technol Zhenjiang 212013 Peoples R China;

    Jilin Normal Univ Minist Educ Key Lab Preparat &

    Applicat Environm Friendly Mat Changchun 130103 Jilin Peoples R China;

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Green Chem &

    Chem Technol Zhenjiang 212013 Peoples R China;

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Green Chem &

    Chem Technol Zhenjiang 212013 Peoples R China;

    Jiangsu Univ Sch Chem &

    Chem Engn Inst Green Chem &

    Chem Technol Zhenjiang 212013 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    ug-C3N4; Hydrogen bond; Nitrogen vacancy; Large specific surface; H-2 evolution;

    机译:UG-C3N4;氢键;氮空位;大的比表面;H-2演变;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号