首页> 外文期刊>Applied Surface Science >Tuning the electronic band structure of graphitic carbon nitride by breaking intramolecular bonds: A simple and effective approach for enhanced photocatalytic hydrogen production
【24h】

Tuning the electronic band structure of graphitic carbon nitride by breaking intramolecular bonds: A simple and effective approach for enhanced photocatalytic hydrogen production

机译:通过破碎分子内键调整石墨氮化物的电子带结构:一种简单有效的增强光催化氢气生产方法

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, the intramolecular structure of a pristine graphitic carbon nitride (GCN) was modified to investigate how it would affect the photocatalytic activity towards hydrogen evolution reaction (HER) under simulated solar irradiation. The intramolecular bonding of GCN was broken by subjecting it to a simple thermal treatment under a controlled environment. Both experimental and computational studies revealed that removal of inter-heptazine CN(H)C groups from the pristine structure induced an amorphous phase and additional energy bands to GCN. It was also observed that a mid-gap state was formed between the conduction band (CB) of the amorphous carbon nitride (ACN) and the H+/H-2 reduction potential. The presence of the mid-gap state not only served as an additional reduction site for HER, but also acted as a buffer to reduce the recombination rate of photogenerated charge carriers. The optimum ACN sample displayed an enhanced photocatalytic performance achieving a HER rate of 789 mu mol/gcat, which was about 2-fold higher than that of pristine GCN. This could be ascribed to the synergistic effect of improved light absorption, increased surface area, suppressed charge recombination and increased charge carrier densities for the ACN samples to drive the overall reduction-oxidation process.
机译:在这项工作中,修饰原始石墨碳氮化物(GCN)的分子内结构以研究如何在模拟的太阳辐射下对氢催化活性朝向氢催化活性的影响。通过在受控环境下进行简单的热处理来破坏GCN的分子内键。两种实验和计算研究都显示出从原始结构中除去七胞酮CN(H)C组,诱导非晶相和额外的能量带至GCN。还观察到,在无定形碳氮化物(ACN)的导电带(CB)和H + / H-2还原电位之间形成中间隙状态。中间隙状态的存在不仅用作额外的减少部位,而且还用作缓冲器以降低光发生电荷载体的重组率。最佳的ACN样品显示出增强的光催化性能,实现了789 moMol / GCAT的速率,其比原始GCN高约2倍。这可以归因于改进的光吸收,增加的表面积,抑制电荷重组和增加的ACN样品的电荷载体密度的协同效应,以驱动整体还原氧化过程。

著录项

  • 来源
    《Applied Surface Science》 |2020年第1期|146600.1-146600.7|共7页
  • 作者单位

    Monash Univ Sch Engn Multidisciplinary Platform Adv Engn Chem Engn Discipline Jalan Lagoon Selatan Bandar Sunway 47500 Selangor Malaysia;

    Monash Univ Sch Engn Multidisciplinary Platform Adv Engn Chem Engn Discipline Jalan Lagoon Selatan Bandar Sunway 47500 Selangor Malaysia;

    Monash Univ Sch Engn Multidisciplinary Platform Adv Engn Chem Engn Discipline Jalan Lagoon Selatan Bandar Sunway 47500 Selangor Malaysia;

    Monash Univ Sch Engn Multidisciplinary Platform Adv Engn Chem Engn Discipline Jalan Lagoon Selatan Bandar Sunway 47500 Selangor Malaysia;

    Monash Univ Sch Engn Multidisciplinary Platform Adv Engn Mech Engn Discipline Jalan Lagoon Selatan Bandar Sunway 47500 Selangor Malaysia;

    Monash Univ Sch Engn Multidisciplinary Platform Adv Engn Chem Engn Discipline Jalan Lagoon Selatan Bandar Sunway 47500 Selangor Malaysia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Photocatalysis; Amorphous carbon nitride; Crystallinity; Hydrogen evolution reaction; Defect engineering; DFT;

    机译:光催化;非晶碳氮化物;结晶性;氢气进化反应;缺陷工程;DFT;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号