首页> 外文期刊>Chemical engineering journal >Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir
【24h】

Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir

机译:碳基毛细管的甲烷表面扩散能力应用于有机富有的页岩气藏

获取原文
获取原文并翻译 | 示例
       

摘要

Organic matter is widely distributed in organic-rich shale gas reservoir and has a large specific surface area to adsorb a significant quantity of methane molecules. In such nanoscale organic pores, the methane adsorbability and surface chemistries give rise to complex methane transport behaviours. Bulk state methane transports beyond continuum flow regime while surface diffusion for adsorbed methane plays a vital role in contributing to the total methane transport ability. In this study, we establish a methane surface diffusion model that considers the influence of confined pore space on methane adsorption, isosteric sorption heat and adsorbed methane coverage under high pressure. Grand canonical Monte Carlos simulations are carried out to estimate the adsorption isotherms of methane across a range of pore sizes and are applied to predict maximum methane concentration inside the adsorption layer volume. The contribution of surface diffusion on total methane transport ability in nanoscale confined pore space is investigated. Study results show that methane permeability for organic pores first decreases and then increases with the increase of pore size. Methane permeability for organic pore size less than 4 nm in relatively low pressure ( 5 MPa) can be comparable to methane permeability for 20-25 nm inorganic pores. This can be attributed to the fact that the surface diffusion effect is enhanced in relatively low pressure and small pore sizes.
机译:有机物质广泛分布于有机富含物流储层,具有大的比表面积,用于吸附大量的甲烷分子。在这种纳米级有机孔中,甲烷吸附性和表面化学物质产生复杂的甲烷运输行为。散装状态甲烷超越连续函数,而吸附甲烷的表面扩散在促进总甲烷的运输能力方面发挥着至关重要的作用。在这项研究中,我们建立了一种甲烷表面扩散模型,其考虑了在高压下对甲烷吸附,具有梭菌吸附热和吸附甲烷覆盖物的影响。进行大规范蒙特卡洛斯模拟,以估计甲烷的吸附等温线在一系列孔径上,并应用于预测吸附层体积内的最大甲烷浓度。研究了表面扩散对纳米尺寸限制孔隙空间总甲烷输送能力的贡献。研究结果表明,有机孔的甲烷渗透性首先降低,然后随着孔径的增加而增加。在相对低的压力(<5MPa)中,有机孔径小于4nm的有机孔径的甲烷渗透可与甲烷渗透率相当于20-25nm无机孔。这可以归因于在相对低的压力和小孔尺寸中提高表面扩散效果。

著录项

  • 来源
    《Chemical engineering journal》 |2018年第2018期|共11页
  • 作者单位

    China Univ Petr East China Sch Petr Engn Econ Tech Dev Zone Changjiang West Rd 66 Qingdao 266580 Shandong Peoples R China;

    Colorado Sch Mines Dept Petr Engn 1500 Illinois St Golden CO 80401 USA;

    China Univ Petr East China Sch Petr Engn Econ Tech Dev Zone Changjiang West Rd 66 Qingdao 266580 Shandong Peoples R China;

    Sinopec Dept Oilfield Explorat &

    Dev Beijing 100029 Peoples R China;

    China Univ Petr East China Sch Petr Engn Econ Tech Dev Zone Changjiang West Rd 66 Qingdao 266580 Shandong Peoples R China;

    China Univ Petr East China Sch Petr Engn Econ Tech Dev Zone Changjiang West Rd 66 Qingdao 266580 Shandong Peoples R China;

    China Univ Petr East China Sch Petr Engn Econ Tech Dev Zone Changjiang West Rd 66 Qingdao 266580 Shandong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    Surface diffusion; Grand canonical Monte Carlos; Methane adsorption; Nanopores; Organic-rich shale gas reservoir;

    机译:表面扩散;大规范蒙特卡洛斯;甲烷吸附;纳米孔;有机丰富的页岩气藏;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号