首页> 外文期刊>Chemical engineering journal >Atomic N-coordinated cobalt sites within nanomesh graphene as highly efficient electrocatalysts for triiodide reduction in dye-sensitized solar cells
【24h】

Atomic N-coordinated cobalt sites within nanomesh graphene as highly efficient electrocatalysts for triiodide reduction in dye-sensitized solar cells

机译:纳米型石墨烯内的原子正钴位点,作为染料敏化太阳能电池的三碘化物降低的高效电催化剂

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Facile yet rational design of efficient electrocatalyst toward triiodide reduction reaction is a persistent challenge for the practical application of dye-sensitized solar cell (DSSC). Here we propose a protocol for fabricating atomic N-coordinated cobalt sites (Co-N-x-C) within nanomesh graphene frameworks (Co-NMG). The as-synthesized Co-NMG combines the features of atomically dispersed active sites and interconnected mesoporous structure with high porosity, which makes these active sites fully exposed and accessible while facilitating the mass transport of reactants. As a result, the Co-NMG electrocatalysts with substantial active sites and desired porous architectures exhibit high electrocatalytic activity and long-term electrochemical stability. Electrochemical measurements and DFT calculations reveal that the catalytic sites toward the reduction of triiodide mainly derive from the abundant topological defects, nitrogen dopants, and especially the atomic Co-N-x-C moieties. Furthermore, with Co-NMG as counter electrodes (CEs), the DSSCs display a power conversion efficiency of 9.06%, which is higher than that of Pt CEs (7.71%). This work not only provides a promising CE material for DSSC to address the issues associated with Pt catalyst, but also opens up new avenues for developing nanocarbon based catalysts with desired features for other energy-related applications.
机译:有效的电催化剂朝向三碘化物还原反应的较合理设计是染料敏化太阳能电池(DSSC)的实际应用持续挑战。在这里,我们提出了一种用于在NanoMesh石墨烯框架(CO-NMG)内制造原子N-协调的钴位点(CO-N-X-C)的方案。作为合成的Co-NMG将原子分散的活性位点的特征结合在一起,具有高孔隙率的互连的介孔结构,这使得这些活性位点完全暴露和可进入,同时促进反应物的大规模运输。结果,具有大量活性位点和所需多孔架构的Co-NMG电催化剂表现出高电催化活性和长期电化学稳定性。电化学测量和DFT计算表明,催化位点朝向三碘化物的还原,主要来自丰富的拓扑缺陷,氮掺杂剂,尤其是原子CO-X-C部分。此外,通过CO-NMG作为反电极(CES),DSSCS显示电力转换效率为9.06%,其高于PT CES(7.71%)。这项工作不仅为DSSC提供了有前途的CE材料,可以解决与Pt催化剂相关的问题,而且还开辟了用于开发基于纳米碳基催化剂的新途径,具有用于其他能量相关的应用的所需特征。

著录项

  • 来源
    《Chemical engineering journal》 |2018年第2018期|共9页
  • 作者单位

    China Univ Petr State Key Lab Heavy Oil Proc Beijing 102249 Changping Peoples R China;

    China Univ Petr State Key Lab Heavy Oil Proc Beijing 102249 Changping Peoples R China;

    China Univ Petr State Key Lab Heavy Oil Proc Beijing 102249 Changping Peoples R China;

    China Univ Petr State Key Lab Heavy Oil Proc Beijing 102249 Changping Peoples R China;

    China Univ Petr State Key Lab Heavy Oil Proc Beijing 102249 Changping Peoples R China;

    China Univ Petr State Key Lab Heavy Oil Proc Beijing 102249 Changping Peoples R China;

    China Univ Petr State Key Lab Heavy Oil Proc Beijing 102249 Changping Peoples R China;

    Chinese Acad Sci Changchun Inst Appl Chem State Key Lab Rare Earth Resource Utilizat Changchun 130022 Jilin Peoples R China;

    China Univ Petr State Key Lab Heavy Oil Proc Beijing 102249 Changping Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    Nanomesh graphene; Co-N-x-C moieties; Electrocatalyst; Triiodide reduction reaction; Dye-sensitized solar cell;

    机译:Nanomesh Graphene;Co-N-X-C部分;电催化剂;三碘化物还原反应;染料敏化太阳能电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号