首页> 外文期刊>Chemical engineering journal >Stability of hydrous ferric oxide nanoparticles encapsulated inside porous matrices: Effect of solution and matrix phase
【24h】

Stability of hydrous ferric oxide nanoparticles encapsulated inside porous matrices: Effect of solution and matrix phase

机译:多孔基质内包封的含水铁氧化物纳米粒子的稳定性:溶液和基质相的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Nanocomposite adsorbents synthesized by in-situ nucleation of hydrous ferric oxide nanoparticles (HFOs) within porous matrices have been extensively studied and applied in polluted water remediation. In this study a series of nanocomposites were developed by loading HFOs inside different porous materials, including anion exchanger (Resin(+)), cation exchanger (Resin(-)), neutral-chloromethyl resin (Resin(0)) and granular activated carbon (GAC), and the stability of the encapsulated HFOs was investigated as a function of pH, ionic strength, temperature and coexisting foreign ions (Fe2+/PO43-). Protonation-induced Fe3+ release was observed for all the tested nanocomposites, and increasing ionic strength of solution facilitated Fe3+ release. HFOs encapsulated in Resin+ phase retarded Fe3+ release as compared to those in Resin(-)/Resin(0) phases. Meanwhile, the HFOs retention capacity increased drastically (e.g., from 20.7% to 75.8% at pH 1.35) with decrease in the average pore diameter of Resin(0) from 32.5 nm to 9.5 nm. Coexisting phosphate not only efficiently suppressed the dissolution of HFOs inside the porous matrices, but hindered their transformation into other crystalline counterparts. Catalytic structural transformation of amorphous HFO phases into thermodynamically more stable phases by Fe (II), commonly observed in bare HFOs systems, was not observed for the encapsulated HFOs. Additionally, EXAFS analyses indicated that the HFOs in Resin-phase have stronger binding energy with Cu (II) ions than the bare HFOs. These results are expected to provide necessary information for the optimization of such nanocomposite adsorbents and their practical applications.
机译:通过原位含有多孔基质内的原位成核(HFO)合成的纳米核复合吸附剂已被广泛研究并应用于污染的水修复。在该研究中,通过在不同多孔材料内加载HFO,包括阴离子交换剂(树脂(+)),阳离子交换剂(树脂( - )),中性 - 氯甲基树脂(树脂(0))和颗粒状活性炭来开发一系列纳米复合材料(GAC),并根据pH,离子强度,温度和共存外离子(Fe2 + / PO43-)的函数研究了包封的HFO的稳定性。对于所有测试的纳米复合材料,观察到质子化诱导的Fe3 +释放,并增加溶液的离子强度促进Fe3 +释放。与树脂( - )/树脂(0)相的相比,封装在树脂+相延迟Fe3 +释放中的HFO。同时,HFOS保留能力大幅增加(例如,从pH 1.35的20.7%至75.8%)随着树脂(0)的平均孔径为32.5nm至9.5nm的降低。共存磷酸盐不仅有效地抑制了多孔基质内部的HFO的溶解,但阻碍了它们转化到其他结晶对应物中。未观察到在裸HFOS系统中常见的Fe(II)在热力学上更稳定的阶段的催化结构转化,均未观察到包封的HFOS。另外,EXAFS分析表明树脂相中的HFO具有与Cu(II)离子的结合能量较强,而不是裸HFO。这些结果预计将提供优化此类纳米复合材料吸附剂及其实际应用的必要信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号