首页> 外文期刊>Chemical engineering journal >In situ synthesis of polyurethane scaffolds with tunable properties by controlled crosslinking of tri-block copolymer and polycaprolactone triol for tissue regeneration
【24h】

In situ synthesis of polyurethane scaffolds with tunable properties by controlled crosslinking of tri-block copolymer and polycaprolactone triol for tissue regeneration

机译:通过控制交联的三嵌段共聚物和聚己内酯三醇进行可调谐性能的聚氨酯支架,用于组织再生的聚氨酯支架

获取原文
获取原文并翻译 | 示例
           

摘要

Mimicking the mechanical properties of native tissues is a critical criterion for an ideal tissue engineering scaffold. However, most biodegradable synthetic materials, including polyester-based polyurethanes (PUs), consist of rigid polyester chains and have high crystallinity. They typically lack the elasticity of most human tissues. In this study, a new type of biodegradable PU with excellent elasticity was synthesized based on the controlled crosslinking of poly(ester ether) triblock copolymer diols and polycaprolactone (PCL) triols using urethane linkages. Three-dimensional (3D) porous scaffolds with a defined geometry, tunable microstructures, and adjustable mechanical properties were synthesized in situ using an isocyanate-ended copolymer, a tri-armed PCL, and a chain extender. The mechanical properties of the scaffolds can be easily tuned by changing the ratio of reactants, varying the solution concentration, or using a porogen. Notably, all of these scaffolds, although mostly made of rigid PCL chains, showed remarkable elasticity and cyclical properties. With an optimized molecular design, a maximum recovery rate of 99.8% was achieved. This was because the copolymer provided molecular flexibility while the long chain crosslinking of PCL triol hindered crystallization, thus making the PU behave like an amorphous elastic material. Moreover, the in vitro cell culture of 3T3 fibroblasts and MG63 osteoblast-like cells confirmed the biocompatibility of these PU scaffolds and revealed that scaffolds with different stiffnesses can stimulate the proliferation of different types of cells. All of these attributes make PU scaffolds extremely suitable for the regeneration of tissues that experience dynamic loading.
机译:模仿本地组织的力学性质是理想组织工程支架的关键标准。然而,大多数可生物降解的合成材料,包括聚酯基聚氨酯(PU),由刚性聚酯链组成,结晶高。它们通常缺乏大多数人组织的弹性。在该研究中,基于使用聚氨酯键合的聚(酯醚)三嵌段共聚物二醇和聚己内酯(PCL)三醇的受控交联合成具有优异弹性的新型可生物降解PU。使用异氰酸酯端共聚物,三臂PCL和链增量剂原位合成具有限定几何形状,可调谐微结构和可调节的机械性能的三维(3D)多孔支架。通过改变反应物的比例,改变溶液浓度,或使用致孔剂,可以容易地调节支架的机械性能。值得注意的是,所有这些支架虽然主要由刚性PCL链制成,但表现出显着的弹性和周期性。通过优化的分子设计,实现了99.8%的最大回收率。这是因为共聚物提供了分子柔性,而PCL三醇的长链交联妨碍结晶,因此使PU表现得像非晶弹性材料。此外,3T3成纤维细胞和Mg63成骨细胞样细胞的体外细胞培养证实了这些PU支架的生物相容性,并显示出具有不同刚度的支架可以刺激不同类型细胞的增殖。所有这些属性使PU支架非常适合于经历动态载荷的组织的再生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号