首页> 美国卫生研究院文献>other >In Situ Synthesis of Polyurethane Scaffolds with Tunable Properties by Controlled Crosslinking of Tri-Block Copolymer and Polycaprolactone Triol for Tissue Regeneration
【2h】

In Situ Synthesis of Polyurethane Scaffolds with Tunable Properties by Controlled Crosslinking of Tri-Block Copolymer and Polycaprolactone Triol for Tissue Regeneration

机译:通过三嵌段共聚物和聚己内酯三醇的可控交联原位合成具有可调性的聚氨酯支架从而再生组织。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mimicking the mechanical properties of native tissues is a critical criterion for an ideal tissue engineering scaffold. However, most biodegradable synthetic materials, including polyester-based polyurethanes (PUs), consist of rigid polyester chains and have high crystallinity. They typically lack the elasticity of most human tissues. In this study, a new type of biodegradable PU with excellent elasticity was synthesized based on the controlled crosslinking of poly(ester ether) triblock copolymer diols and polycaprolactone (PCL) triols using urethane linkages. Three-dimensional (3D) porous scaffolds with a defined geometry, tunable microstructures, and adjustable mechanical properties were synthesized in situ using an isocyanate-ended copolymer, a tri-armed PCL, and a chain extender. The mechanical properties of the scaffolds can be easily tuned by changing the ratio of reactants, varying the solution concentration, or using a porogen. Notably, all of these scaffolds, although mostly made of rigid PCL chains, showed remarkable elasticity and cyclical properties. With an optimized molecular design, a maximum recovery rate of 99.8% was achieved. This was because the copolymer provided molecular flexibility while the long chain crosslinking of PCL triol hindered crystallization, thus making the PU behave like an amorphous elastic material. Moreover, the in vitro cell culture of 3T3 fibroblasts and MG63 osteoblast-like cells confirmed the biocompatibility of these PU scaffolds and revealed that scaffolds with different stiffnesses can stimulate the proliferation of different types of cells. All of these attributes make PU scaffolds extremely suitable for the regeneration of tissues that experience dynamic loading.
机译:模仿天然组织的机械特性是理想的组织工程支架的关键标准。但是,大多数可生物降解的合成材料,包括基于聚酯的聚氨酯(PU),均由刚性聚酯链组成,并具有较高的结晶度。它们通常缺乏大多数人体组织的弹性。在这项研究中,基于聚(酯醚)三嵌段共聚物二醇和聚己内酯(PCL)三醇利用氨基甲酸酯键的受控交联,合成了一种新型的具有出色弹性的可生物降解的聚氨酯。使用异氰酸酯封端的共聚物,三臂PCL和扩链剂,就地合成了具有定义的几何形状,可调的微结构和可调节的机械性能的三维(3D)多孔支架。通过改变反应物的比例,改变溶液浓度或使用致孔剂,可以轻松地调节支架的机械性能。值得注意的是,尽管所有这些支架主要由刚性PCL链制成,但它们均显示出显着的弹性和周期性。通过优化的分子设计,最大回收率达到了99.8%。这是因为该共聚物提供了分子柔性,而PCL三醇的长链交联却阻止了结晶,从而使PU表现得像无定形弹性材料。此外,体外3T3成纤维细胞和MG63成骨细胞样细胞的细胞培养证实了这些PU支架的生物相容性,并揭示了具有不同刚度的支架可以刺激不同类型细胞的增殖。所有这些属性使PU支架非常适合经历动态负荷的组织再生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号