...
首页> 外文期刊>Chemical engineering journal >Development of an ASM2d-N2O model to describe nitrous oxide emissions in municipal WWTPs under dynamic conditions
【24h】

Development of an ASM2d-N2O model to describe nitrous oxide emissions in municipal WWTPs under dynamic conditions

机译:动态条件下,在城市WWTPS中描述一氮氧化物排放的ASM2D-N2O模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nitrous oxide (N2O), a significant contributor to the greenhouse effect, is generated during the biological nutrient removal in wastewater treatment plants (WWTPs). Developing mathematical models estimating the N2O dynamics under changing operational conditions (e. g. dissolved oxygen, DO) is essential to design mitigation strategies. Based on the activated sludge models (ASM) structure, this work presents an ASM2d-N2O model including all the biological N2O production pathways for a municipal anaerobic/anoxic/oxic (A2/O) WWTP with biological removal of organic matter, nitrogen and phosphorus, and its application in different dynamic scenarios. Three microbial N2O production pathways were considered: nitrifier denitrification, hydroxylamine oxidation, and heterotrophic denitrification, with the first two being activated by ammonia oxidizing bacteria (AOB). A stripping effectivity (SE) coefficient was added to reflect the non-ideality of the stripping model. Partial nitrification and high N2O production via nitrifier denitrification were observed when the range of DO in the aerobic compartment was 1.8 to 2.5 mg center dot L-1. It could imply that low aeration strategies lead to low overall carbon footprint provided complete nitrification is not hindered. The model predicted high N2O emissions when low DO ( 1.1 mg L-1) and high ammonium concentration concurred. With the AOB prevailing over the nitrite oxidizing bacteria (NOB), nitrite was accumulated, triggering the activation of the nitrifier denitrification pathway. After suddenly increasing the influent ammonium load, the AOB had a greater growth compared to the NOB and the same pathway was considered as N2O hotspot. Especially under conditions promoting partial nitrification (i. e. low DO) and raising the stripping effect importance (i. e. high SEs), the highest N2O emission factors were predicted.
机译:在废水处理厂(WWTPS)中的生物养分除去期间产生一氧化二氮(N2O),产生温室效应的重要原因。开发估计在变化的操作条件下N2O动态的数学模型(例如,溶解氧,DO)对于设计缓解策略至关重要。基于活性污泥模型(ASM)结构,该工作介绍了一个ASM2D-N2O模型,包括用于城市厌氧/缺氧/氧(A2 / O)WWTP的所有生物N2O生产途径,具有有机物质,氮和磷的生物学去除,及其在不同动态方案中的应用。考虑了三种微生物N2O生产途径:硝化亚硝化,羟胺氧化和异养反硝化,第一个由氨氧化细菌(AOB)活化。加入剥离效果(SE)系数以反映汽提模型的非理想性。观察到通过硝化硝化反硝化的部分硝化和高N2O产生,当有氧舱中的DO范围为1.8至2.5mg中心点L-1时,观察到。它可能暗示,低通气策略导致低整体碳足迹,提供完全硝化效果不会受到阻碍。该模型在低DO(1.1mg L-1)和高铵浓度时预测了高N2O排放。对于亚硝酸盐氧化细菌(NOB)持续的AOB,累积亚硝酸盐,引发硝化亚硝化碳化途径的活化。在突然增加流入的铵载后,与NOB相比,AOB具有更大的生长,并且相同的途径被认为是N2O热点。特别是在促进偏硝化的条件下(即低于)并提高剥离效果的重要性(即,高SES),预测了最高的N2O排放因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号