...
首页> 外文期刊>CERAMICS INTERNATIONAL >Auto-combustion synthesis and electrochemical studies of La0.6Sr0.4Co0.2Fe0.8O3-delta - Ce0.8Sm0.1Gd0.1O1.90 nanocomposite cathode for intermediate temperature solid oxide fuel cells
【24h】

Auto-combustion synthesis and electrochemical studies of La0.6Sr0.4Co0.2Fe0.8O3-delta - Ce0.8Sm0.1Gd0.1O1.90 nanocomposite cathode for intermediate temperature solid oxide fuel cells

机译:LA0.6SR0.4CO0.2FE0.8O3-DELTA - CE0.8SM0.1GD0.1O1.90纳米复合材料中间温度固体氧化物燃料电池的自燃合成及电化学研究

获取原文
获取原文并翻译 | 示例
           

摘要

In the present study, a nanocomposite cathode comprising Fe rich La0.6Sr0.4CO0.2Fe0.8O3-(delta) (LSCF) based pervoskite semiconductor oxide and Sm-Gd co-doped ceria rich Ce0.8Sm0.1Gd0.1O1.90 (CSGO) in the ratio of 1:1 has been successfully synthesized by a simple glycine nitrate auto combustion method. The structural properties of the two phase nanocomposite were evaluated by X-ray diffraction and Raman spectroscopy. A detailed electrical properties of co-doped LSCF-CSGO nanocomposites have been studied with a comparison of LSCF added with 10 mol% and 20 mol% Gd singly doped ceria (LSCF-GDC10 and LSCF-GDC20) nanocomposites as a function of temperature in the range of 673-1073 K at air atmosphere by AC impedance spectroscopy. The total electrical conductivity of the co-doped LSCF-CSGO nanocomposites has been found to be 0.043 S cm(-1) at 973 K which is higher than that of the LSCF composite containing singly doped compositions. The Sm co-doping in GDC phase has effectively helped to reduce the undesired electronic conduction produced in the doped ceria as the electron concentration of LSCF-CSGO was found to be - 2.62 x 10(15) cm(-3) which was lower than the electron concentration of LSCF containing singly doped nanocomposite (LSCF-GDC20, - 2 x 10(16) cm(-3)) estimated by Hall Effect measurement. The activation energy of LSCF-CSGO nanocomposite has been found to be 0.05 eV for the oxygen reduction reaction by temperature dependent Arrhenius equation. The improved electrical properties in terms of high ionic conductivity and low activation energy have been achieved through the incorporation of Sm into GDC10 electrolyte phase in LSCF nanocomposite. The combustion synthesis method has also effectively helped to produce microstructure containing large grain size (mu 6 mu m) which is beneficial for enlarging triple phase boundary (TPB) area of cathodes utilized in solid oxide fuel cells (SOFC) operated at reduced/intermediate temperature (673-973 K).
机译:在本研究中,纳米复合材料阴极包含Fe富含LA0.6SR0.4CO0.2FE0.8O3-(DELTA)(LSCF)的Perovoskite半导体氧化物和SM-GD共掺杂的CE0.8sm0.1gd0.1O1.90( CSGO)以1:1的比例通过简单的甘氨酸硝酸盐自动燃烧方法成功地合成。通过X射线衍射和拉曼光谱评估两相纳米复合材料的结构性质。已经研究了共掺杂LSCF-CSGO纳米复合材料的详细电性能,其中LSCF与10mol%和20摩尔%GD单掺杂的二氧化铈(LSCF-GDC10和LSCF-GDC20)纳米复合材料进行了比较,作为温度的函数AC阻抗光谱法在空气气氛下673-1073 k的范围。已经发现共掺杂LSCF-CSGO纳米复合材料的总电导率为973k的0.043秒(-1),其高于含有单掺杂组合物的LSCF复合材料的0.043秒CM(-1)。 GDC相中的SM共掺杂已经有效地帮助降低掺杂的二氧化铈中产生的不希望的电子传导,因为发现LSCF-CSGO的电子浓度为-2.62×10(15)厘米(-3),其低于通过霍尔效应测量估计单掺杂纳米复合材料的LSCF的电子浓度(LSCF-GDC20,-2×10(-3))。已经发现LSCF-CSGO纳米复合物的活化能量为通过温度依赖的Arhenius方程的氧还原反应为0.05eV。通过在LSCF纳米复合材料中将SM掺入GDC10电解质相,通过在LSCF纳米复合材料中加入GDC10电解质相来实现了高离子电导率和低激活能的改进的电学性质。燃烧合成方法还有效地帮助产生含有大粒度(Mu6μm)的微观结构,该微观结构是有利于在降低/中间温度下操作的固体氧化物燃料电池(SOFC)中使用的阴极的三相边界(TPB)区域(673-973 k)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号