...
首页> 外文期刊>CERAMICS INTERNATIONAL >Amorphization-governed elasto-plastic deformation under nanoindentation in cubic (3C) silicon carbide
【24h】

Amorphization-governed elasto-plastic deformation under nanoindentation in cubic (3C) silicon carbide

机译:在立方(3C)碳化硅中纳米内狭窄下的无晶体化的弹性塑性变形

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Amorphization plays an important role in ceramic deformation under mechanical loading. In the present work, we investigate the elasto-plastic deformation mechanisms of monocrystalline cubic silicon carbide (3C-SiC) in spherical nanoindentation by means of molecular dynamics simulations. The indentation-induced amorphization and its interactions with other deformation modes are emphasized. Initially, the suitable empirical potential capable of accurately characterizing the mechanical and defect properties of monocrystalline 3C-SiC, as well as the propensity of phase transformation from 3C-SiC to amorphous SiC, is rationally selected by benchmarking of different empirical potentials with experimental data and density functional theory calculations. Subsequently, the inhomogeneous elastic-plastic transitions during nanoindentation of monocrystalline 3C-SiC, as well as their dependence on crystallographic orientation, are investigated. Phase transformations including amorphization are analyzed using combined methods based on radial distribution function and bond angle distribution. Our simulation results demonstrate that before plasticity initiation-related "pop-in" event, each indented-mono-crystalline 3C-SiC experiences a pure quasi-elastic deformation governed by the formation of amorphous structures. And this process of amorphization is fully reversible for small indentation depths. Further amorphization and dislocation nucleation jointly dominate the incipient plasticity in 3C-SiC nanoindentation. It is found that the indentation-induced defect zone composed of amorphous phase and dislocations is more pronounced in 3C-SiC(010) than that in the other two orientations of (110) and (111).
机译:非晶化在机械负载下在陶瓷变形中起着重要作用。在目前的工作中,我们通过分子动力学模拟研究了球形纳米压痕中单晶立方碳化硅(3C-SiC)的弹性变形机制。强调缩进诱导的混合物及其与其他变形模式的相互作用。最初,能够精确地表征单晶3C-SiC的机械和缺陷性能的合适的经验电位,以及从3C-SiC到无定形SiC的相变的倾向是通过与实验数据的不同经验潜力的基准测试来合理选择。密度泛函理论计算。随后,研究了在单晶3C-SiC的纳米内的不均匀弹性转变,以及它们对晶体取向的依赖性。使用基于径向分布函数和键角分布的组合方法分析包括非晶化的相变。我们的仿真结果表明,在塑性启动相关的“弹出式”事件之前,每个缩进单晶3C-SIC经历通过形成非晶结构的形成治理的纯粹的准弹性变形。并且这种无体化的过程是完全可逆的,对于小压痕深度。进一步的非晶化和脱位成核共同统治3C-SiC纳米狭窄中的初始可塑性。发现由非晶相和脱位组成的压痕诱导的缺陷区在3C-SiC(010)中比(110)和(111)的其他两个取向更明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号