...
首页> 外文期刊>Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies >Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell
【24h】

Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell

机译:微生物燃料电池中磺胺甲氧唑的降解机制及其诱导细菌群落变化和抗生素抗性基因

获取原文
获取原文并翻译 | 示例

摘要

In this study, more than 85.1% of sulfamethoxazole (SMX) could be degraded within 60 h. The strengthening of microbial metabolisms and the sustainment of electrical stimulation contributed to the rapid removal of SMX in microbial fuel cells (MFCs). High-performance liquid chromatography identified that SMX could be thoroughly degraded into less harmful alcohols and methane after the MFC processing. In addition, the major role of Shewanella sp. and Geobacteria sp. in power generation, and the promotion of Alcaligenes, Pseudomonas and Achromobacter in SMX degradation have been demonstrated. Moreover, this study further proved that the copy numbers of targeted antibiotic resistance genes and integrons produced in MFCs were much lower than those found in conventional wastewater treatment plants; MFCs seem to be a promising alternative to reduce antibiotics in wastewater treatment and water purification.
机译:在这项研究中,超过85.1%的磺胺甲恶唑(SMX)可以在60小时内降解。 强化微生物代谢和电刺激的可持续性导致微生物燃料电池(MFC)中的SMX快速去除。 高效液相色谱标明,在MFC加工后,SMX可以彻底降解到较少有害的醇和甲烷中。 此外,雪松饭SP的主要作用。 和geobacteria sp。 在发电中,已经证明了SMX降解中的促进阿尔卡尔酮,假鼠和Achromobacter。 此外,该研究进一步证明了靶向抗生素抗性基因和在MFC中产生的整数的拷贝数远低于常规废水处理厂中的含量; MFCS似乎是一项有前途的替代方案,可以减少废水处理和净水中的抗生素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号