首页> 外文期刊>Biomaterials >3D full-field quantification of cell-induced large deformations in fibrillar biomaterials by combining non-rigid image registration with label-free second harmonic generation
【24h】

3D full-field quantification of cell-induced large deformations in fibrillar biomaterials by combining non-rigid image registration with label-free second harmonic generation

机译:通过将非刚性图像配准与无标记二次谐波产生的非刚性图像配准,三维全场定量细胞诱导的纤维状生物材料中的大变形

获取原文
获取原文并翻译 | 示例
       

摘要

To advance our current understanding of cell-matrix mechanics and its importance for biomaterials development, advanced three-dimensional (3D) measurement techniques are necessary. Cell-induced deformations of the surrounding matrix are commonly derived from the displacement of embedded fiducial markers, as part of traction force microscopy (TFM) procedures. However, these fluorescent markers may alter the mechanical properties of the matrix or can be taken up by the embedded cells, and therefore influence cellular behavior and fate. In addition, the currently developed methods for calculating cell-induced deformations are generally limited to relatively small deformations, with displacement magnitudes and strains typically of the order of a few microns and less than 10% respectively. Yet, large, complex deformation fields can be expected from cells exerting tractions in fibrillar biomaterials, like collagen. To circumvent these hurdles, we present a technique for the 3D full-field quantification of large cell-generated deformations in collagen, without the need of fiducial markers. We applied non-rigid, Free Form Deformation (FFD)-based image registration to compute full-field displacements induced by MRC-5 human lung fibroblasts in a collagen type I hydrogel by solely relying on second harmonic generation (SHG) from the collagen fibrils. By executing comparative experiments, we show that comparable displacement fields can be derived from both fibrils and fluorescent beads. SHG-based fibril imaging can circumvent all described disadvantages of using fiducial markers. This approach allows measuring 3D full-field deformations under large displacement (of the order of 10 mm) and strain regimes (up to 40%). As such, it holds great promise for the study of large cell-induced deformations as an inherent component of cell-biomaterial interactions and cell-mediated biomaterial remodeling. (C) 2017 Elsevier Ltd. All rights reserved.
机译:为了推进目前对细胞矩阵力学的理解及其对生物材料的重要性,需要先进的三维(3D)测量技术。作为嵌入基准标记物的位移,通常衍生的细胞诱导的周围基质的变形,作为牵引力显微镜(TFM)程序的一部分。然而,这些荧光标记物可以改变基质的机械性能,或者可以被嵌入的细胞占用,从而影响细胞行为和命运。此外,目前开发的用于计算细胞诱导的变形的方法通常限于相对较小的变形,具有分别为几微米且小于10%的位移幅度和菌株。然而,可以预期大,复杂的变形场,从纤维树生物材料中施加牵引力,如胶原蛋白。为了规避这些障碍,我们提出了一种技术在于胶原蛋白的大型细胞产生变形的3D全场定量技术,而不需要基准标记。我们应用非刚性,自由形式变形(FFD)的图像配准,以计算MRC-5人肺成纤维细胞在胶原I型水凝胶中诱导的全场位移,通过仅依赖于来自胶原型原纤维的二次谐波产生(SHG) 。通过执行比较实验,我们表明可比较的位移场可以源自原纤维和荧光珠。基于SHG的原纤维成像可以规避所有描述使用基准标记的缺点。这种方法允许在大的位移(大约10mm)和应变制度(高达40%)下测量3D全场变形。因此,它对大型电池诱导的变形研究作为细胞 - 生物材料相互作用和细胞介导的生物材料重塑的固有组分来对研究大量的诱导变形。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号