...
首页> 外文期刊>ACS catalysis >Reaction Network of Methanol Synthesis over Cu/ZnO Nanocatalysts
【24h】

Reaction Network of Methanol Synthesis over Cu/ZnO Nanocatalysts

机译:Cu / ZnO纳米催化剂上甲醇合成反应网络

获取原文
获取原文并翻译 | 示例
           

摘要

The efficiency of industrial methanol synthesis from syngas results from a complex scenario of surface chemical reactions in the presence of dynamical morphological changes of the catalyst material in response to the chemical and physical properties of the gas phase, which are believed to explain the superior performance of the Cu/ZnO catalyst. Yet, the applied conditions of elevated temperatures and pressures substantially hamper in situ experimental access and, therefore, detailed understanding of the underlying reaction mechanism(s) and active site(s). Here, part of this huge space of possibilities emerging from the structural and chemical configurations of both, adsorbates and continuously altering Cu/ZnO catalyst material, is successfully explored by pure computational means. Using our molecular dynamics approach to computational heterogeneous catalysis, being based on advanced ab initio simulations in conjunction with thermodynamically optimized catalyst models, the resulting mapping of the underlying free energy landscape discloses an overwhelmingly rich network of parallel, competing, and reverse reaction channels. After having analyzed various pathways that directly lead from CO2 to methanol, not only specific Cu/ZnO interface sites but also the near surface region over the catalyst surface were identified as key to some pivotal reaction steps in the global reaction network. Analysis of the mechanistic details and electronic structure along individual steps unveils three distinct mechanisms of surface chemical reactions being all at work, namely Eley-Rideal, Langmuir-Hinshelwood, and Mars-van Krevelen. Importantly, the former and latter mechanisms can only be realized upon including systematically the near surface region and dynamical transformations of catalyst sites, respectively, in the reaction space throughout all simulations.
机译:由合成气合成甲醇的工业效率是由于存在复杂的表面化学反应场景,在这种情况下催化剂材料会响应气相的化学和物理性质而发生动态形态变化,这被认为可以解释甲烷的优越性能。 Cu / ZnO催化剂。然而,升高的温度和压力的施加条件显着阻碍了原位实验通道,因此,对潜在的反应机理和活性部位的详细理解。在这里,通过纯计算手段成功地探索了由吸附物和不断变化的Cu / ZnO催化剂材料的结构和化学构型产生的这种巨大可能性的一部分。使用我们的分子动力学方法来计算非均相催化,该方法基于先进的从头算与热力学优化的催化剂模型相结合,所得到的潜在自由能分布图揭示了并联反应,竞争反应和反向反应通道的极为丰富的网络。在分析了直接从CO2到甲醇的各种途径后,不仅特定的Cu / ZnO界面位点,而且催化剂表面附近的近表面区域被确定为全局反应网络中某些关键反应步骤的关键。对各个步骤的机械细节和电子结构的分析揭示了三种不同的表面化学反应机理,它们分别在起作用,即Eley-Rideal,Langmuir-Hinshelwood和Mars-van Krevelen。重要的是,只有在整个模拟过程中,分别在反应空间中系统地包括近表面区域和催化剂位点的动态转化,才能实现前者和后者的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号