...
首页> 外文期刊>ACS catalysis >Investigating the Electrocatalytic Oxidation of Dihydronicotinamide Adenine Dinucleotide at Nitrogen-Doped Carbon Nanotube Electrodes: Implications to Electrochemically Measuring Dehydrogenase Enzyme Kinetics
【24h】

Investigating the Electrocatalytic Oxidation of Dihydronicotinamide Adenine Dinucleotide at Nitrogen-Doped Carbon Nanotube Electrodes: Implications to Electrochemically Measuring Dehydrogenase Enzyme Kinetics

机译:研究氮掺杂碳纳米管电极上的二氢烟碱酰胺腺嘌呤二核苷酸的电催化氧化:对电化学测量脱氢酶动力学的影响。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nitrogen-doped carbon nanotubes (N-CNTs) have been shown to be electrocatalytic toward the oxidation of dihydronicotinamide adenine dinucleotide (NADH), the reduced form of the coenzyme necessary for enzymatic turnover in NAD+-dependent dehydrogenases. The observed oxidation potential of the electrocatalyst, however, still shows a significant overpotential, suggesting that even for effective electrocatalysts, electrooxidation may be kinetically controlled. We demonstrate using the Koutecky-Levich rotating disk electrode technique that the observed electron transfer rate constant (kobs) is a function of potential over a wide potential window; however, kobs could only be accurately measured for a portion of that window for the electrocatalytic N-CNTs. More importantly, electrochemically measured enzyme kinetics, acquired after adsorption of glucose dehydrogenase onto the N-CNTs, are never independent of potential, even when the electron transfer rate constant is too fast to measure by the rotating disk technique. Thus, electrochemically obtained kinetics (e.g., KM app and Vmax) are actually measuring the electrochemical kinetics of NADH oxidation at the electrode surface, rather than the spontaneous and potential-independent enzymatic turnover.
机译:氮掺杂的碳纳米管(N-CNT)已被证明可催化二羟烟酰胺腺嘌呤二核苷酸(NADH)的氧化,这是NAD +依赖性脱氢酶中酶促转化所必需的还原型辅酶。然而,观察到的电催化剂的氧化电势仍然显示出明显的过电势,这表明即使对于有效的电催化剂,电氧化也可以被动力学地控制。我们证明了使用Koutecky-Levich转盘电极技术,观察到的电子传递速率常数(kobs)是在宽电势窗口内电势的函数。然而,对于电催化N-CNT,仅在该窗口的一部分中才能准确地测量小穗。更重要的是,即使当电子转移速率常数太快而无法通过转盘技术测量时,在葡萄糖脱氢酶吸附到N-CNT上后获得的电化学测量的酶动力学也永远不会独立于电势。因此,电化学获得的动力学(例如,KM app和Vmax)实际上是在电极表面上测量NADH氧化的电化学动力学,而不是自发的和不依赖电势的酶转化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号