首页> 外文期刊>Biotechnology and Bioengineering >Co-Production of Acetone and Ethanol With Molar Ratio Control Enables Production of Improved Gasoline or Jet Fuel Blends
【24h】

Co-Production of Acetone and Ethanol With Molar Ratio Control Enables Production of Improved Gasoline or Jet Fuel Blends

机译:通过摩尔比控制共同生产丙酮和乙醇,可生产出改进的汽油或喷气燃料混合物

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The fermentation of simple sugars to ethanol has been the most successful biofuel process to displace fossil fuel consumption worldwide thus far. However, the physical properties of ethanol and automotive components limit its application in most cases to 10-15 vol% blends with conventional gasoline. Fermentative co-production of ethanol and acetone coupled with a catalytic alkylation reaction could enable the production of gasoline blendstocks enriched in higher-chain oxygenates. Here we demonstrate a synthetic pathway for the production of acetone through the mevalonate precursor hydroxymethylglutaryl-CoA. Expression of this pathway in various strains of Escherichia coli resulted in the co-production of acetone and ethanol. Metabolic engineering and control of the environmental conditions for microbial growth resulted in controllable acetone and ethanol production with ethanol: acetone molar ratios ranging from 0.7: 1 to 10.0: 1. Specifically, use of gluconic acid as a substrate increased production of acetone and balanced the redox state of the system, predictively reducing the molar ethanol: acetone ratio. Increases in ethanol production and the molar ethanol: acetone ratio were achieved by co-expression of the aldehyde/alcohol dehydrogenase (AdhE) from E. coli MG1655 and by co-expression of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) from Z. mobilis. Controlling the fermentation aeration rate and pH in a bioreactor raised the acetone titer to 5.1 g L-1, similar to that obtained with wild-type Clostridium acetobutylicum. Optimizing the metabolic pathway, the selection of host strain, and the physiological conditions employed for host growth together improved acetone titers over 35-fold (0.14-5.1 g/L). Finally, chemical catalysis was used to upgrade the co-produced ethanol and acetone at both low and high molar ratios to higher-chain oxygenates for gasoline and jet fuel applications. (C) 2016 Wiley Periodicals, Inc.
机译:迄今为止,单糖发酵为乙醇已成为取代化石燃料消耗最成功的生物燃料工艺。但是,乙醇和汽车部件的物理性能在大多数情况下将其应用限制在与常规汽油的10-15%(体积)混合中。乙醇和丙酮的发酵联产以及催化烷基化反应可以使富含高链含氧化合物的汽油调合原料得以生产。在这里,我们展示了通过甲羟戊酸酯前体羟甲基戊二酰辅酶A生产丙酮的合成途径。该途径在各种大肠杆菌中的表达导致丙酮和乙醇的联合生产。代谢工程和控制微生物生长的环境条件导致可控的丙酮和乙醇生产,乙醇与丙酮的摩尔比范围为0.7:1至10.0:1。特别地,使用葡萄糖酸作为底物可提高丙酮的产量并平衡丙酮的产生。系统的氧化还原状态,可预测地降低乙醇:丙酮的摩尔比。通过从大肠杆菌MG1655共表达醛/醇脱氢酶(AdhE),以及从Z共同表达丙酮酸脱羧酶(Pdc)和乙醇脱氢酶(AdhB),可以提高乙醇产量和乙醇/丙酮摩尔比。运动..控制生物反应器中的发酵通气速率和pH值,可将丙酮效价提高至5.1 g L-1,这与野生型乙酰丁酸梭菌所获得的相似。优化代谢途径,宿主菌株的选择以及宿主生长所使用的生理条件,共同提高了丙酮滴度超过35倍(0.14-5.1 g / L)。最后,使用化学催化将低摩尔和高摩尔比的联产乙醇和丙酮升级为汽油和喷气燃料应用的高链含氧化合物。 (C)2016威利期刊公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号