首页> 外文期刊>American Journal of Physiology >Glutamate transport and cellular glutamine metabolism: regulation in LLC-PK1 vs. LLC-PK1-F+ cell lines.
【24h】

Glutamate transport and cellular glutamine metabolism: regulation in LLC-PK1 vs. LLC-PK1-F+ cell lines.

机译:谷氨酸转运和细胞谷氨酰胺代谢:LLC-PK1与LLC-PK1-F +细胞系中的调节。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The glutamate (Glu) transporter may modulate cellular glutamine (Gln) metabolism by regulating both the rates of hydrolysis and subsequent conversion of Glu to alpha-ketoglutarate and NH+4. By delivering Glu, a competitive inhibitor of Gln for the phosphate-dependent glutaminase (PDG) as well as an acid-load activator of glutamate dehydrogenase (GDH) flux, the transporter may effectively substitute extracellularly generated Glu from the gamma-glutamyltransferase for that derived intracellularly from Gln. We tested this hypothesis in two closely related porcine kidney cell lines, LLC-PK1 and LLC-PK1-F+, the latter selected to grow in the absence of glucose, relying on Gln as their sole energy source. Both cell lines exhibited PDG suppression as the result of Glu uptake while disrupting the extracellular L-Glu uptake, with D-aspartate-accelerated intracellular Glu formation coupled primarily to the ammoniagenic pathway (GDH). Conversely, enhancing the extracellular Glu formation with p-aminohippurate and Glu uptake suppressed intracellular Gln hydrolysis while NH+4 formation from Glu increased. Thus these results are consistent with the transporter's dual role in modulating both PDG and GDH flux. Interestingly, PDG flux was actually higher in the Gln-adapted LLC-PK1-F+ cell line because of a two- to threefold enhancement in Gln uptake despite greater Glu uptake than in the parental LLC-PK1 cells, revealing the importance of both Glu and Gln transport in the modulation of PDG flux. Nevertheless, when studied at physiological Gln concentration, PDG flux falls under tight Glu transporter control as Gln uptake decreases, suggesting that cellular Gln metabolism may indeed be under Glu transporter control in vivo.
机译:谷氨酸(Glu)转运蛋白可通过调节水解速率和随后将Glu转化为α-酮戊二酸和NH + 4的方式来调节细胞谷氨酰胺(Gln)的代谢。通过递送Glu(Gln的竞争性抑制剂,它是磷酸盐依赖性谷氨酰胺酶(PDG)以及谷氨酸脱氢酶(GDH)流量的酸负荷激活剂),转运蛋白可以有效地替代由γ-谷氨酰转移酶从细胞外生成的Glu来替代来自Gln的细胞内。我们在两个密切相关的猪肾细胞系LLC-PK1和LLC-PK1-F +中测试了该假设,LLC-PK1和LLC-PK1-F +依赖于Gln作为其唯一能源而选择在不存在葡萄糖的情况下生长。两种细胞系均表现出PDG抑制,这是由于Glu摄取引起的,同时破坏了细胞外L-Glu摄取,其中D-天门冬氨酸加速的细胞内Glu形成主要与产氨途径(GDH)偶联。相反,用对氨基马尿酸盐增强细胞外Glu的形成和Glu的摄取抑制了细胞内Gln的水解,而由Glu形成的NH + 4则增加了。因此,这些结果与转运蛋白在调节PDG和GDH通量中的双重作用一致。有趣的是,尽管Glu摄取量比亲代LLC-PK1细胞要大,尽管Glu摄取量增加了2到3倍,但在Gln适应的LLC-PK1-F +细胞系中PDG通量实际上更高。这揭示了Glu和Gln传输在PDG通量的调制中。然而,当在生理Gln浓度下进行研究时,随着Gln吸收的减少,PDG流量会受到严格的Glu转运蛋白控制,这表明体内的细胞Gln代谢确实确实处于Glu转运蛋白的控制之下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号