首页> 外文期刊>ACS applied materials & interfaces >Enzyme Catalytic Efficiency: A Function of Bio-Nano Interface Reactions
【24h】

Enzyme Catalytic Efficiency: A Function of Bio-Nano Interface Reactions

机译:酶催化效率:生物-纳米界面反应的功能。

获取原文
获取原文并翻译 | 示例
       

摘要

Biocatalyst immobilization onto carbon-based nanosupports has been implemented in a variety of applications ranging from biosensing to biotransformation and from decontamination to energy storage. However, retaining enzyme functionality at carbon-based nanosupports was challenged by the non-specific attachment of the enzyme as well as by the enzyme—enzyme interactions at this interface shown to lead to loss of enzyme activity. Herein, we present a systematic study of the interplay reactions that take place upon immobilization of three pure enzymes namely soybean peroxidase, chloroperoxidase, and glucose oxidase at carbon-based nanosupport interfaces. The immobilization conditions involved both single and multipoint single-type enzyme attachment onto single and multi-walled carbon nanotubes and graphene oxide nanomaterials with properties determined by Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Our analysis showed that the different surface properties of the enzymes as determined by their molecular mapping and size work synergistically with the carbon-based nanosupports physico-chemical properties (i.e., surface chemistry, charge and aspect ratios) to influence enzyme catalytic behavior and activity at nanointerraces. Knowledge gained from these studies can be used to optimize enzyme—nanosupport symbiotic reactions to provide robust enzyme-based systems with optimum functionality to be used for fermentation, biosensors, or biofuel applications.
机译:从生物传感到生物转化以及从净化到能量存储的各种应用中,已经实现了将生物催化剂固定在碳基纳米载体上的方法。但是,在碳基纳米载体上保留酶功能受到酶的非特异性附着以及酶的挑战,该界面处的酶相互作用表明会导致酶活性下降。在这里,我们提出了一种相互作用的系统研究,该相互作用是在碳基纳米载体界面上固定三种纯酶即大豆过氧化物酶,氯过氧化物酶和葡萄糖氧化酶时发生的。固定化条件涉及单点和多点单型酶附着在单壁和多壁碳纳米管和氧化石墨烯纳米材料上,其性质由傅里叶变换红外光谱(FTIR),能量色散X射线分析(EDX),扫描电子显微镜确定(SEM)和原子力显微镜(AFM)。我们的分析表明,由酶的分子图谱和大小决定的酶的不同表面特性与碳基纳米载体协同作用的物理化学特性(即表面化学,电荷和长宽比)会影响酶的催化行为和活性。纳米界面。从这些研究中获得的知识可用于优化酶与纳米支持的共生反应,从而为发酵,生物传感器或生物燃料应用提供功能强大的,具有最佳功能的基于酶的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号