首页> 外文期刊>ACS applied materials & interfaces >Soft Matter Beats Hard Matter: Rupturing of Thin Metallic Films Induced by Mass Transport in Photosensitive Polymer Films
【24h】

Soft Matter Beats Hard Matter: Rupturing of Thin Metallic Films Induced by Mass Transport in Photosensitive Polymer Films

机译:软物质战胜硬物质:在感光聚合物薄膜中由传质引起的金属薄膜破裂

获取原文
获取原文并翻译 | 示例
       

摘要

The interface between thin films of metal and polymer materials play a significant role in modern flexible microelectronics viz., metal contacts on polymer substrates, printed electronics and prosthetic devices. The major emphasis in metal—polymer interface is on studying how the externally applied stress in the polymer substrate leads to the deformation and cracks in metal film and vice versa. Usually, the deformation process involves strains varying over large lateral dimensions because of excessive stress at local imperfections. Here we show that the seemingly random phenomena at macroscopic scales can be rendered rather controllable at submicrometer length scales. Recently, we have created a metal—polymer interface system with strains varying over periods of several hundred nanometers. This was achieved by exploiting the formation of surface relief grating (SRG) within the azobenzene containing photosensitive polymer film upon irradiation with light interference pattern. Up to a thickness of 60 nm, the adsorbed metal film adapts neatly to the forming relief, until it ultimately ruptures into an array of stripes by formation of highly regular and uniform cracks along the maxima and minima of the polymer topography. This surprising phenomenon has far-reaching implications. This is the first time a direct probe is available to estimate the forces emerging in SRG formation in glassy polymers. Furthermore, crack formation in thin metal films can be studied literally in slow motion, which could lead to substantial improvements in the design process of flexible electronics. Finally, cracks are produced uniformly and at high density, contrary to common sense. This could offer new strategies for precise nanofabrication procedures mechanical in character.
机译:金属薄膜与聚合物材料之间的界面在现代柔性微电子学,聚合物基板上的金属触点,印刷电子产品和修复设备中起着重要作用。金属-聚合物界面的主要重点是研究聚合物基板上的外部应力如何导致金属膜的变形和破裂,反之亦然。通常,变形过程涉及应变,因为局部缺陷处的应力过大,因此应变在较大的横向尺寸上变化。在这里,我们显示了在宏观尺度上看似随机的现象在亚微米长度尺度下可以相当可控。最近,我们创建了一种金属-聚合物界面系统,其应变在数百纳米的周期内变化。这是通过利用在光干涉图案照射下在含偶氮苯的感光性聚合物膜中形成表面起伏光栅(SRG)来实现的。直到60 nm的厚度,被吸附的金属膜都可以很好地适应成型凸起,直到最终通过沿着聚合物形貌的最大值和最小值形成高度规则且均匀的裂纹而最终破裂成条状阵列。这种令人惊讶的现象具有深远的影响。这是首次可以使用直接探针来估计玻璃态聚合物中SRG形成中出现的力。此外,可以从字面上研究慢动作中金属薄膜中的裂纹形成,这可能会大大改善柔性电子产品的设计过程。最后,与常识相反,均匀且高密度地产生裂纹。这可以为机械特性方面的精确纳米加工程序提供新的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号