首页> 外文期刊>ACS applied materials & interfaces >First-Principles Study on the Thermal Stability of LiNiO2 Materials Coated by Amorphous Al2O3 with Atomic Layer Thickness
【24h】

First-Principles Study on the Thermal Stability of LiNiO2 Materials Coated by Amorphous Al2O3 with Atomic Layer Thickness

机译:原子层厚度无定形Al2O3涂层LiNiO2材料热稳定性的第一性原理研究

获取原文
获取原文并翻译 | 示例
       

摘要

Using first-principles calculations, we study how to enhance thermal stability of high Ni compositional cathodes in Li-ion battery application. Using the archetype material LiNiO2 (LNO), we identify that ultrathin coating of Al2O3 (0001) on LNO(012) surface, which is the Li de-/intercalation channel, substantially improves the instability problem. Density functional theory calculations indicate that the Al2O3 deposits show phase transition from the corundum-type crystalline (c-Al2O3) to amorphous (a-Al(2)O3()) structures as the number of coating layers reaches three. Ab initio molecular dynamic simulations on the LNO(012) surface coated by a-Al2O3 (about 0.88 nm) with three atomic layers oxygen gas evolution is strongly suppressed at T = 400 K. We find that the underlying mechanism is the strong contacting force at the interface between LNO(012) and Al2O3 deposits, which, in turn, originated from highly ionic chemical bonding of Al and O at the interface. Furthermore, we identify that thermodynamic stability of the a-Al2O3 is even more enhanced with Li in the layer, implying that the protection for the LNO(012) surface by the coating layer is meaningful over the charging process. Our approach contributes to the design of innovative cathode materials with not only high-energy capacity but also long-term thermal and electrochemical stability applicable for a variety of electrochemical energy devices including Li-ion batteries.
机译:使用第一性原理计算,我们研究了如何增强锂离子电池应用中高Ni组成阴极的热稳定性。使用原型材料LiNiO2(LNO),我们发现在Li脱嵌层通道LNO(012)上的超薄Al2O3(0001)涂层大大改善了不稳定性问题。密度泛函理论计算表明,随着涂层数量达到三层,Al2O3沉积物显示出从刚玉型晶体(c-Al2O3)到非晶态(a-Al(2)O3())结构的相变。在T = 400 K时,α-Al2O3(约0.88 nm)具有3个原子层的LNO(012)表面涂覆的具有三个原子层的氧气逸出的从头算分子动力学模拟被强烈抑制。 LNO(012)和Al2O3沉积物之间的界面,这又是由于界面处Al和O的高度离子化学键合引起的。此外,我们发现层中的Li可以进一步增强a-Al2O3的热力学稳定性,这意味着涂层对LNO(012)表面的保护在充电过程中是有意义的。我们的方法有助于设计创新的阴极材料,该材料不仅具有高能量容量,而且还具有适用于包括锂离子电池在内的各种电化学能源设备的长期热稳定性和电化学稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号