首页> 外文期刊>ACS applied materials & interfaces >Tunable Hydrogen Separation in Porous Graphene Membrane: First-Principle and Molecular Dynamic Simulation
【24h】

Tunable Hydrogen Separation in Porous Graphene Membrane: First-Principle and Molecular Dynamic Simulation

机译:多孔石墨烯膜中的可调氢分离:第一性原理和分子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

First-principle density functional theory (DFT) calculation and molecular dynamic (MD) simulation are employed to investigate the hydrogen purification performance of two-dimensional porous graphene material (PG-ESX). First, the pore size of PG-ESl (3.2775 A) is expected to show high selectivity of H2 by DFT calculation. Then MD simulations demonstrate the hydrogen purification process of the PG-ESX membrane. The results indicate that the selectivity of H2 over several other gas molecules that often accompany H2 in industrial steam methane reforming or dehydrogenation of alkanes (such as N2, CO, and CH4) is sensitive to the pore size of the membrane. PG-ES and PG-ESl membranes both exhibit high selectivity for H2 over other gases, but the permeability of the PG-ES membrane is much lower than the PG-ESl membrane because of the smaller pore size. The PG-ES2 membrane with bigger pores demonstrates low selectivity for H2 over other gases. Energy barrier and electron density have been used to explain the difference of selectivity and permeability of PG-ESX membranes by DFT calculations. The energy barrier for gas molecules passing through the membrane generally increase with the decreasing of pore sizes or increasing of molecule kinetic diameter, due to the different electron overlap between gas and a membrane. The PG-ESl membrane is far superior to other carbon membranes and has great potential applications in hydrogen purification, energy clean combustion, and making new concept membrane for gas separation.
机译:利用第一原理密度泛函理论(DFT)计算和分子动力学(MD)模拟研究二维多孔石墨烯材料(PG-ESX)的氢净化性能。首先,通过DFT计算,预期PG-ES1的孔径(3.2775A)显示出对H 2的高选择性。然后,MD模拟证明了PG-ESX膜的氢纯化过程。结果表明,在工业蒸汽甲烷重整或烷烃脱氢(例如N2,CO和CH4)中,H2对通常伴随H2的其他几种气体分子的选择性对膜的孔径敏感。 PG-ES和PG-ES1膜均对H2表现出比其他气体高的选择性,但是PG-ES膜的渗透性比PG-ES1膜低得多,因为其孔径较小。具有较大孔的PG-ES2膜对氢气的选择性比其他气体低。能量垒和电子密度已用于通过DFT计算来解释PG-ESX膜的选择性和渗透性的差异。由于气体和膜之间的电子重叠不同,通过膜的气体分子的能垒通常随着孔径的减小或分子动力学直径的增加而增加。 PG-ESl膜远远优于其他碳膜,在氢纯化,能量清洁燃烧和制造用于气体分离的新概念膜方面具有巨大的潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号