...
首页> 外文期刊>ACS applied materials & interfaces >p-MoO3 Nanostructures-TiO2 Nanofiber Heterojunctions: Controlled Fabrication and Enhanced Photocatalytic Properties
【24h】

p-MoO3 Nanostructures-TiO2 Nanofiber Heterojunctions: Controlled Fabrication and Enhanced Photocatalytic Properties

机译:p-MoO3纳米结构/ n-TiO2纳米纤维异质结:可控制的制备和增强的光催化性能

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, p-MoO3 nanostructures-TiO2 nanofiber heterojunctions (p-MoO3-TiO2-NF-HJs) were obtained by a two-step fabrication route. First, MoO2 nanostructures were hydro-thermally grown on electrospun TiO2 nanofibers. Second, by thermal treatment of the obtained MoO2 nanostractures/TiO2 nanofibers, p-MoO3-TiO2-NF-HJs were obtained due to the phase transition of MoO2 to M0O3. With increasing the concentration of molybdenum precursor in hydrothermal process, the morphologies of MoO2 changed from nanoparticles to nanosheets, and then fully covered shells with an increased loading on TiO2 nanofibers. After calcination, the obtained p-MoO3-TiO2-NF-HJs possessed similar morphology to that without thermal treatment. X-ray photoelectron spectra showed that both Ti 2p and O_(Ti-O) Is peaks of p-MoO3-TiO2-NF-HJs shifted to higher binding energies than that of TiO2 nanofibers, suggesting electron transfer from TiO2 to M0O3 in the formation of p-n nanoheterojunctions. The p-n nanoheterojunctions decreased photoluminescence intensity, suppressed photogenerated electrons and holes recombinations, and enhanced charge separation and photocatalytic efficiencies. The apparent first-order rate constant for the degradation of RB by p-MoO3-TiO2-NF-HJs with nanosheets surface morphology was two times that of TiO2 nanofibers. For the core/shell structure of p-MoO3/w-TiO2-NF-HJs, the internal electric field of p-n junction forced the photogenerated electrons transferring to TiO2 cores, then decreased the surface photocatalytic reactions and led to the lowest photocatalytic activity among the p-Mo(Vn-TiO2-NF-HJs.
机译:在这项工作中,通过两步制造路线获得了p-MoO3纳米结构/ n-TiO2纳米纤维异质结(p-MoO3 / n-TiO2-NF-HJs)。首先,在电纺TiO2纳米纤维上水热生长MoO2纳米结构。其次,通过对获得的MoO2纳米结构/ TiO2纳米纤维进行热处理,由于MoO2向M0O3的相变,获得了p-MoO3 / n-TiO2-NF-HJs。随着水热过程中钼前驱物浓度的增加,MoO2的形态从纳米颗粒变为纳米片,然后完全覆盖壳,并在TiO2纳米纤维上增加了负荷。煅烧后,获得的p-MoO3 / n-TiO2-NF-HJs具有与未经热处理相似的形态。 X射线光电子能谱表明,Ti 2p和O_(Ti-O)都是p-MoO3 / n-TiO2-NF-HJs的峰转移到比TiO2纳米纤维更高的结合能,表明电子从TiO2转移到M0O3中。 pn纳米异质结的形成。 p-n纳米异质结降低了光致发光强度,抑制了光生电子和空穴的重组,并增强了电荷分离和光催化效率。具有纳米片表面形态的p-MoO3 / n-TiO2-NF-HJs降解RB的表观一级速率常数是TiO2纳米纤维的两倍。对于p-MoO3 / w-TiO2-NF-HJs的核/壳结构,pn结的内部电场迫使光生电子转移到TiO2核上,然后降低了表面光催化反应并导致光催化活性最低。 p-Mo(Vn-TiO2-NF-HJs。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号