首页> 外文学位 >Pseudo-one-dimensional Zn-Fe-O Nanostructure Arrays: Controlled Fabrication, Magnetic Properties and Photocatalytic Applications.
【24h】

Pseudo-one-dimensional Zn-Fe-O Nanostructure Arrays: Controlled Fabrication, Magnetic Properties and Photocatalytic Applications.

机译:伪一维Zn-Fe-O纳米结构阵列:受控制造,磁性和光催化应用。

获取原文
获取原文并翻译 | 示例

摘要

In the present thesis, several kinds of pseudo-one-dimensional Zn-Fe-O nanostructure arrays with tunable chemical compositions, crystal structures and morphologies are successfully synthesized via a simple wet-chemical ZnO-nanowire-array templating method.;Vertically-aligned ZnO nanowire arrays are firstly fabricated on several different substrates and then serve as templates for other nanostructured arrays growth. The ZnO nanowires not only act as morphology-defining skeleton but also contribute chemically to the final composition of the nanostructures. By controlling the reaction time between ZnO and FeCl3 solution, ZnO/ZnFe2O4 nanocable arrays, stoichiometric ZnFe 2O4 nanotube arrays, nonstoichiometric ZnFe2O 4 nanotube arrays, ZnFe2O4/alpha-Fe2O 3 nanotube arrays and alpha-Fe2O3 nanotube arrays can be synthesized in a controlled manner after calcination. Both ZnFe 2O4 and alpha-Fe2O3 nanotube arrays exhibit visible light absorption and their bandgap are estimated to be ∼2.3 eV and ∼1.7 eV, respectively.;The detailed structural information of the ZnFe2O4 nanotube arrays are obtained by electron energy loss spectroscopy (EELS). In particular, EELS are carried out for two different series (i.e., temperature and stoichiometric series). The magnetic properties of these samples are found to closely correlate to their structural characteristics. Firstly, with the decrease of the calcination temperature from 600 °C to 400 °C, more Fe3+ ions occupy A sites (tetrahedral sites in spinel structure) rather than their equilibrium B sites (octahedral sites in spinel structure). The deviation from the normal spinel structure leads to the enhancement of superexchange interactions between Fe3+ ions in A and B sites, and thus results in an increase in blocking temperature (T B), magnetic anisotropic constant (K), saturation magnetization (MS, at 3 K and 300 K), coercivity (H C, at 3 K) and a decrease in MS (3K)/MS(300 K) ratios. Secondly, by comparing stoichiometric and nonstoichiometric ZnFe2O4 nanotubes calcinated at the same temperature, we found that the nonstoichiometric nanotubes (Fe:Zn > 2) shows similar ratios of Fe3+ in A and B sites to that of the stoichiometric one. The extra Fe3+ in the crystal also enhances the superexchange interactions of Fe3+, which results in larger T B, K, MS (at 3 K and 300 K) and HC (at 3 K), and smaller MS(3 K)/MS(300 K) ratio. Lastly, alpha-Fe2O 3 nanotubes, as an extreme case of the nonstoichiometric sample, show typical Morin-transition characterization under small external field, and field-induced spin-flop transition at large external field.;On the other hand, we found that the visible-light-driven photodegradation activities of ZnO/ZnFe2O4 nanocable arrays are superior to those of the ZnO nanowire arrays and ZnFe2O4 nanotube arrays using RhB as the probe molecules. All the three nanostructures show degradation of RhB molecules under visible light irradiation, but they take different degradation pathways. The degradation of RhB in the presence of ZnO nanowire arrays is attributed to the dye-sensitized mechanism, and the photodegradation activity is the worst. ZnO/ZnFe2O4 nanocable arrays and ZnFe2O4 nanotube arrays have the same degradation mechanism, that is, reactive radicals produced by photogenerated electron-hole pairs in the visible-light-active ZnFe2O4 are responsible for the photodegradation of RhB. However, the nanocable arrays show much higher degradation capability. This is owing to the type II band alignment between ZnO and ZnFe2O4, which greatly promotes the separation of photogenerated electrons and holes in ZnFe2O 4.
机译:本文通过简单的湿法ZnO-纳米线阵列模板法成功合成了几种具有可调化学组成,晶体结构和形貌的准一维Zn-Fe-O纳米结构阵列。 ZnO纳米线阵列首先在几种不同的基底上制造,然后用作其他纳米结构阵列生长的模板。 ZnO纳米线不仅充当定义形态的骨架,而且在化学上也有助于纳米结构的最终组成。通过控制ZnO和FeCl3溶液之间的反应时间,可以以受控方式合成ZnO / ZnFe2O4纳米电缆阵列,化学计量的ZnFe 2O4纳米管阵列,非化学计量的ZnFe2O 4纳米管阵列,ZnFe2O4 /α-Fe2O3纳米管阵列和α-Fe2O3纳米管阵列。煅烧后。 ZnFe 2O4和α-Fe2O3纳米管阵列均显示可见光吸收,其带隙分别估计为〜2.3 eV和〜1.7 eV。; ZnFe2O4纳米管阵列的详细结构信息是通过电子能量损失谱(EELS)获得的。特别地,针对两个不同的序列(即,温度和化学计量的序列)进行EELS。发现这些样品的磁性能与其结构特征密切相关。首先,随着煅烧温度从600°C降至400°C,更多的Fe3 +离子占据了A位(尖晶石结构中的四面体位置),而不是它们的平衡B位(尖晶石结构中的八面体位置)。与正常尖晶石结构的偏离导致A和B位点中的Fe3 +离子之间的超交换相互作用增强,从而导致结块温度(TB),磁各向异性常数(K),饱和磁化强度(MS,3) K和300 K),矫顽力(HC,3 K)和MS(3K)/ MS(300 K)比降低。其次,通过比较在相同温度下煅烧的化学计量的和非化学计量的ZnFe2O4纳米管,我们发现非化学计量的纳米管(Fe:Zn> 2)在A和B位置的Fe3 +比率与化学计量的相似。晶体中额外的Fe3 +也增强了Fe3 +的超交换相互作用,从而导致较大的TB,K,MS(3K和300K)和HC(3K),以及较小的MS(3K)/ MS(300) K)比率。最后,作为非化学计量样品的极端情况,α-Fe2O3纳米管在较小的外场下表现出典型的莫林跃迁特征,而在较大的外场下表现出场致自旋跃迁跃迁。 ZnO / ZnFe2O4纳米电缆阵列的可见光驱动光降解活性优于以RhB为探针分子的ZnO纳米线阵列和ZnFe2O4纳米管阵列。这三个纳米结构都显示了在可见光照射下RhB分子的降解,但是它们采用不同的降解途径。 ZnO纳米线阵列存在下RhB的降解归因于染料敏化机理,而光降解活性最差。 ZnO / ZnFe2O4纳米电缆阵列和ZnFe2O4纳米管阵列具有相同的降解机理,即可见光活性ZnFe2O4中光生电子-空穴对产生的反应自由基是RhB光降解的原因。然而,纳米电缆阵列显示出更高的降解能力。这是由于ZnO和ZnFe2O4之间的II型能带排列,这大大促进了ZnFe2O 4中光生电子和空穴的分离。

著录项

  • 作者

    Guo, Xuan.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号