首页> 外文期刊>ACS applied materials & interfaces >Rational Design of High-Surface-Area Carbon Nanotube/Microporous Carbon Core-Shell Nanocomposites for Supercapacitor Electrodes
【24h】

Rational Design of High-Surface-Area Carbon Nanotube/Microporous Carbon Core-Shell Nanocomposites for Supercapacitor Electrodes

机译:用于超级电容器电极的高表面积碳纳米管/微孔碳核-壳纳米复合材料的合理设计

获取原文
获取原文并翻译 | 示例
       

摘要

All-carbon-based carbon nanotube (CNT)/microporous carbon core-shell nanocomposites, in which a CNT as the core and high-surface-area microporous carbon as the shell, have been prepared by in situ resorcinol-formaldehyde resin coating of CNTs, followed by carbonization and controlled KOH activation. The obtained nanocomposites have very high Brunauer-Emmett-Teller surface areas (up to 1700 m(2)/g), narrow pore size distribution (<2 nm), and 1D tubular structure within a 3D entangled network. The thickness of the microporous carbon shell can be easily tuned from 20 to 215 nm by changing the carbon precursor/CNT mass ratio. In such a unique core-shell structure, the CNT core could mitigate the key issue related to the low electronic conductivity of microporous carbons. On the other hand, the 1D tubular structure with a short pore-pathway micropore as well as a 3D entangled network could increase the utilization degree of the overall porosity and improve the electrode kinetics. Thus, these CNT/microporous carbon core-shell nanocomposites exhibit a great potential as an electrode material for supercapacitors, which could deliver high specific capacitance of 237 F/g, excellent rate performance with 75% maintenance from 0.1 to 50 A/g, and high cyclability in H2SO4 electrolyte. Moreover, the precisely controlled microporous carbon shells may allow them to serve as excellent model systems for microporous carbons, in general, to illustrate the role of the pore length on the diffusion and kinetics inside the micropores.
机译:通过碳纳米管的间苯二酚-甲醛树脂涂层制备了全碳基碳纳米管(CNT)/微孔碳核-壳纳米复合材料,其中CNT为核,高表面积微孔碳为壳。 ,然后碳化并控制KOH活化。获得的纳米复合材料具有很高的Brunauer-Emmett-Teller表面积(高达1700 m(2)/ g),窄的孔径分布(<2 nm)和3D纠缠网络中的1D管状结构。通过改变碳前体/ CNT的质量比,可以容易地将微孔碳壳的厚度从20nm调节至215nm。在这种独特的核-壳结构中,CNT核可缓解与微孔碳的低电子电导率有关的关键问题。另一方面,具有短孔隙路径微孔的1D管状结构以及3D缠结网络可以提高整体孔隙率的利用率,并改善电极动力学。因此,这些CNT /微孔碳核-壳纳米复合材料作为超级电容器的电极材料具有巨大的潜力,可以提供237 F / g的高比电容,出色的倍率性能以及从0.1到50 A / g的75%维持率,以及在H2SO4电解质中具有高循环性。此外,精确控制的微孔碳壳可以使它们成为微孔碳的优良模型系统,通常可以说明孔长度对微孔内部扩散和动力学的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号