首页> 外文期刊>Biotechnology and Bioengineering >A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor
【24h】

A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor

机译:灌注生物反应器中新组织生长过程中切应力分布的三维计算流体动力学模型

获取原文
获取原文并翻译 | 示例
           

摘要

Bone tissue engineering strategies use flow through perfusion bioreactors to apply mechanical stimuli to cells seeded on porous scaffolds. Cells grow on the scaffold surface but also by bridging the scaffold pores leading a fully filled scaffold following the scaffold's geometric characteristics. Current computational fluid dynamic approaches for tissue engineering bioreactor systems have been mostly carried out for empty scaffolds. The effect of 3D cell growth and extracellular matrix formation (termed in this study as neotissue growth), on its surrounding fluid flow field is a challenge yet to be tackled. In this work a combined approach was followed linking curvature driven cell growth to fluid dynamics modeling. The level-set method (LSM) was employed to capture neotissue growth driven by curvature, while the Stokes and Darcy equations, combined in the Brinkman equation, provided information regarding the distribution of the shear stress profile at the neotissue/medium interface and within the neotissue itself during growth. The neotissue was assumed to be micro-porous allowing flow through its structure while at the same time allowing the simulation of complete scaffold filling without numerical convergence issues. The results show a significant difference in the amplitude of shear stress for cells located within the micro-porous neo-tissue or at the neotissue/medium interface, demonstrating the importance of taking along the neotissue in the calculation of the mechanical stimulation of cells during culture.The presented computational framework is used on different scaffold pore geometries demonstrating its potential to be used a design as tool for scaffold architecture taking into account the growing neotissue. Biotechnol. Bioeng. 2015;112: 2591-2600. (c) 2015 Wiley Periodicals, Inc.
机译:骨组织工程学策略使用流经灌注生物反应器的方式将机械刺激应用于接种在多孔支架上的细胞。细胞在支架表面上生长,但也可以通过桥接支架孔来引导完全填充的支架,从而遵循支架的几何特征。用于组织工程生物反应器系统的当前计算流体动力学方法主要是针对空支架进行的。 3D细胞生长和细胞外基质形成(在本研究中称为新组织生长)对其周围流体流场的影响是一个尚待解决的挑战。在这项工作中,采用了一种组合方法,将曲率驱动的细胞生长与流体动力学模型联系起来。采用水平集方法(LSM)捕获由曲率驱动的新组织生长,而结合在Brinkman方程中的Stokes和Darcy方程则提供了有关新组织/介质界面以及组织内部的剪切应力分布的信息。新组织本身在生长过程中。假定新组织是微孔的,允许流过其结构,同时允许模拟完整的支架填充而没有数值收敛问题。结果表明,位于微孔新组织内或新组织/培养基界面处的细胞在剪切应力幅度上存在显着差异,这表明在培养过程中对细胞进行机械刺激计算中,应将新组织带入细胞中提出的计算框架可用于不同的支架孔几何结构,这表明考虑到正在生长的新组织,其潜力可被用作支架建筑设计的工具。生物技术。生恩2015; 112:2591-2600。 (c)2015年威利期刊有限公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号