...
首页> 外文期刊>Journal of the Royal Society Interface >Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates
【24h】

Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates

机译:机翼设计的灵感:如何在现代脊椎动物中驾驶有效飞行

获取原文
获取原文并翻译 | 示例

摘要

Harnessing flight strategies refined by millions of years of evolution can help expedite the design of more efficient, manoeuvrable and robust flying robots. This review synthesizes recent advances and highlights remaining gaps in our understanding of how bird and bat wing adaptations enable effective flight. Included in this discussion is an evaluation of how current robotic analogues measure up to their biological sources of inspiration. Studies of vertebrate wings have revealed skeletal systems well suited for enduring the loads required during flight, but the mechanisms that drive coordinated motions between bones and connected integuments remain ill-described. Similarly, vertebrate flight muscles have adapted to sustain increased wing loading, but a lack of in vivo studies limits our understanding of specific muscular functions. Forelimb adaptations diverge at the integument level, but both bird feathers and bat membranes yield aerodynamic surfaces with a level of robustness unparalleled by engineered wings. These morphological adaptations enable a diverse range of kinematics tuned for different flight speeds and manoeuvres. By integrating vertebrate flight specializations-particularly those that enable greater robustness and adaptability-into the design and control of robotic wings, engineers can begin narrowing the wide margin that currently exists between flying robots and vertebrates. In turn, these robotic wings can help biologists create experiments that would be impossible in vivo.
机译:利用乘坐成熟的飞行策略,通过数百万年的进化可以帮助加快设计更高效,可操纵和强大的飞行机器人。本次审查综合了最近的进步,并突出了我们对鸟类和蝙蝠翼适应如何实现有效飞行的差距。在本次讨论中,评估当前机器人类似物如何测量其生物学来源的灵感。脊椎动物翅膀的研究揭示了骨骼系统,该系统非常适合于持续停留飞行期间所需的负载,但是驱动骨骼和连接的整体之间的协调动作的机制仍然不适。同样,脊椎动物飞行肌肉适应维持增加的翼载荷,但缺乏体内研究限制了我们对特定肌肉功能的理解。前肢适应在整数水平下发散,但鸟羽和蝙蝠膜都产生空气动力学表面,具有由工程翼无与伦比的鲁棒性水平。这些形态适应能够为不同的飞行速度和机动调整各种运动学。通过整合脊椎动物飞行专业化 - 特别是那些能够更具稳健性和适应性的机器人翅膀的设计和控制,工程师可以开始缩小目前存在的飞行机器人和脊椎动物之间存在的宽边缘。反过来,这些机器人翅膀可以帮助生物学家创造实验,这在体内是不可能的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号