首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Elasticity, plasticity and analytical machinability prediction of lithium metasilicate/disilicate glass ceramics
【24h】

Elasticity, plasticity and analytical machinability prediction of lithium metasilicate/disilicate glass ceramics

机译:锂偏硅酸锂/硅酸盐玻璃陶瓷的弹性,可塑性和分析性预测

获取原文
获取原文并翻译 | 示例
           

摘要

This paper applied non-linear theory of elasticity (NLTE) to partition indentation-induced deformations into elasticity and plasticity for lithium metasilicate glass ceramic (LMGC), sintered and pressed lithium disilicate glass ceramics (SLDGC and PLDGC). It also used elastic plastic fracture mechanics (EPFM) approach to analytically predict machinability for these materials. Using the Sakai's series elastic and plastic deformation model that applied NLTE, the resistances to plasticity for LMGC, SLDGC and PLDGC were extracted from their respective indentation-extracted plane strain moduli and contact hardness values. Plane strain moduli and resistances to plasticity were used to calculate elasticity and plasticity for these materials. Furthermore, the EPFM approach in the Sakai-Nowak model was applied to deconvolute resistances to machining-induced cracking for these materials. All properties were extracted at 10 mN peak load and 0.1-2 mN/s loading rates to determine the loading-rate influence on these properties. The resistances to plasticity of LMGC and SLDGC were loading rate dependent (ANOVA, p 0.05). The strain rate sensitivity model was used to find the intrinsic resistances to plasticity for LMGC and SLDGC. The elastic displacement/deformation components were dominant for LMGC at all loading rates. For SLDGC and PLDGC, the deformation mechanisms were dynamic with the plastic and elastic deformation components dominating at low loading and high loading rates respectively, a phenomenon attributed to indentation energies. The decrease in plastic displacements for all materials with increase in loading rate was due to the strain hardening behaviour. Also, PLDGC revealed the highest absorbed energy followed by SLDGC and LMGC. Finally, PLDGC had the highest resistance to machining-induced cracking followed by SLDGC and LMGC. This study provides a quantitative basis to rank materials in terms of brittleness, ductility and resistance to mechanically-induced cracking.
机译:本文将非线性弹性理论(NLTE)应用于将压痕诱导的变形分配成锂酸锂玻璃陶瓷(LMGC),烧结和压制锂大胆玻璃陶瓷(SLDGC和PLDGC)的弹性和可塑性。它还使用弹性塑料骨折力学(EPFM)方法来分析这些材料的可加工性。利用施加NLTE的Sakai系列弹性和塑性变形模型,从它们各自的凹口提取的平面菌株模量和接触硬度值提取对LMGC,SLDGC和PLDGC的可塑性的电阻。平面应变模态和塑性的电阻用于计算这些材料的弹性和可塑性。此外,Sakai-Nowak模型中的EPFM方法被应用于对这些材料的加工诱导的裂缝的去卷积电阻。所有性质在10mN峰值载荷和0.1-2mN / s加载速率下萃取,以确定对这些性质的负载率影响。对LMGC和SLDGC的可塑性的抗性依赖于加载速率(ANOVA,P 0.05)。应变速率灵敏度模型用于找到对LMGC和SLDGC的可塑性的内在电阻。弹性位移/变形组分在所有加载率下都是LMGC的显性。对于SLDGC和PLDGC,变形机制是动态的,塑料和弹性变形组件分别以低负荷和高负荷率分别主导,该现象归因于压痕能量。所有材料的塑料位移减少随着载入速率的增加而导致菌株硬化行为。此外,PLDGC揭示了最高吸收能量,然后是SLDGC和LMGC。最后,PLDGC对加工诱导的裂缝具有最高的抗性,然后是SLDGC和LMGC。本研究为脆性,延展性和耐受机械诱导的裂化而言,为缩短材料提供了定量基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号